98%
921
2 minutes
20
NETosis is a form of neutrophil death leading to the release of extracellular chromatin and the assembling of proteins, including antiviral proteins, primed by an initial pathogenic stimulus. Under certain specific conditions, neutrophils can exhibit a double-edged activity. This event has been implicated in COVID-19 among other conditions. Neutrophil extracellular traps (NETs) are involved in the pathogenesis of COVID-19 by promoting a pro-inflammatory and a procoagulant state leading to multiorgan failure. This particular form of host defense promoted by neutrophils is closely related to the well-known cytokine storm observed in severe COVID-19 patients. These two elements therefore represent possible targets for treatment of severe SARS-CoV-2 infections.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8376580 | PMC |
http://dx.doi.org/10.3389/fphar.2021.708302 | DOI Listing |
PLoS One
September 2025
Laboratory of Molecular and Cellular Immunology, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.
The short lifespan of polymorphonuclear neutrophils (PMNs) in vitro poses challenges, as their limited viability restricts functional assays and experimental manipulations. The HL-60 cell line serves as a valuable model for neutrophil-like differentiation, yet the functional relevance of ATRA- and DMSO-induced differentiation remains incompletely understood. In the present study, we aimed to characterize the differentiation potential of all-trans retinoic acid (ATRA) and dimethyl sulfoxide (DMSO) on HL-60 cells and compare their functionality with primary PMNs.
View Article and Find Full Text PDFTrends Immunol
September 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria 3004, Australia; Department of Cardiometabolic Health, The University of Melbourne, Melbourne, Victoria 3010, Australia. Electronic address:
Neutrophil extracellular trap (NET) formation, or NETosis, is a key innate immune response that contributes to cardiovascular diseases, including vascular inflammation, atherosclerosis, and thrombosis. In the cardiovascular system, neutrophils encounter mechanical cues such as shear stress, matrix stiffness, and cyclic stretch that influence their activation and NET release. This review examines emerging evidence linking altered mechanotransduction to dysregulated NETosis in vascular aging and cardiovascular pathology.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
September 2025
Department of Medical Engineering, Al-Nisour University College, Baghdad, Iraq.
Neutrophils are granular and polymorphonuclear cells and one of the main participants of the innate immune system, which have received considerable attention due to the discovery of neutrophil extracellular traps (NETs). Extracellular vesicles (EVs), particularly those released by immune cells such as neutrophils, have been associated with the immunopathogenesis of autoimmune diseases. Besides, studies have reported a fundamental correlation between EVs and NETosis in autoimmune diseases.
View Article and Find Full Text PDFBioessays
September 2025
Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
Neutrophil extracellular traps (NETs)-web-like DNA structures extruded by neutrophils in response to various stimuli, including pathogens, sterile inflammation, and mechanical stress-play a dual role in immunity and disease. While NETs serve to trap and neutralize pathogens during host defense, excessive or dysregulated NET formation, known as NETosis, can amplify inflammation and contribute to thrombotic complications such as atherosclerosis and valve disease. Increasing evidence supports that NETosis is a regulated, signaling-driven process, and that mechanical forces-including shear stress, tensile force, and matrix stiffness-can act as noncanonical danger signals capable of inducing NETosis.
View Article and Find Full Text PDFBiology (Basel)
August 2025
Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
Tenrecs are heterothermic burrowing mammals, which are capable of withstanding extreme environmental stressors, including during hibernation. Their phylogenetic position as reminiscent of an ancestral placental mammal makes tenrecs a unique model for evolutionarily conserved traits, with potential translatability to human physiology and pathobiology, including adaptations to extreme environments. In this study, we compared tenrec plasma for post-translational protein citrullination profiles (citrullinomes) and extracellular vesicle (EV) characteristics, including selected microRNA cargoes (miR-21, miR-155, miR-206, miR-210), between baseline active and hibernating states at low (12 °C) and high (28 °C) ambient temperatures.
View Article and Find Full Text PDF