Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The dysregulation of glycolysis regardless of oxygen availability is one of the major characteristics of cancer cells. While the drug resistance of ovarian cancer cells has been extensively studied, the molecular mechanism of anticancer drug resistance under low-glucose conditions remains unknown. In this study, we investigated the pathway mediating drug resistance under low-glucose conditions by examining the relationship between embryonic lethal abnormal vision Drosophila homolog-like (ELAVL) protein and glycolysis-related enzymes. Ovarian cancer cells resistant to 2.5 nM paclitaxel were exposed to low-glucose media for 2 weeks, and the expression levels of ELAVL2, ELAVL4, glycolytic enzymes, and drug resistance-related proteins were elevated to levels comparable to those in cells resistant to 100 nM paclitaxel. Gene silencing of ELAVL2/4 using small interfering RNA prevented the upregulation of glycolysis-related enzymes, reduced lactate production, and sensitized 2.5 nM paclitaxel-resistant ovarian cancer cells to anticancer agents under hypoglycemic conditions. Furthermore, pharmacological inhibition of glycolytic enzymes with 2-deoxyglucose, a specific inhibitor of glycolysis, triggered caspase-dependent apoptosis, reduced lactate generation, and blocked the expression of drug resistance-related proteins under low-glucose conditions. These results suggest that the level of ELAVL2/4 is responsible for the development of chemoresistance through activation of the glycolysis pathway under glucose deprivation conditions.

Download full-text PDF

Source
http://dx.doi.org/10.1097/CAD.0000000000001215DOI Listing

Publication Analysis

Top Keywords

cancer cells
20
ovarian cancer
16
drug resistance
12
low-glucose conditions
12
glucose deprivation
8
resistance low-glucose
8
glycolysis-related enzymes
8
cells resistant
8
glycolytic enzymes
8
drug resistance-related
8

Similar Publications

3-O-sulfation of heparan sulfate (HS) is the key determinant for binding and activation of Antithrombin III (AT). This interaction is the basis of heparin treatment to prevent thrombotic events and excess coagulation. Antithrombin-binding HS (HSAT) is expressed in human tissues, but is thought to be expressed in the subendothelial space, mast cells, and follicular fluid.

View Article and Find Full Text PDF

Cell death mechanisms play a fundamental role in mycobacterial pathogenesis. We critically reviewed 94 research manuscripts, 44 review articles, and 4 book chapters to analyze important discoveries, background literature, and potential shortcomings in the field. The focus of this review is the pathogen (Mtb) and other Mtb and complex microorganisms.

View Article and Find Full Text PDF

NPY-functionalized niosomes for targeted delivery of margatoxin in breast cancer therapy.

Med Oncol

September 2025

Venom and Biotherapeutics Molecules Laboratory, Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran.

Neuropeptide Y (NPY) and the voltage-gated potassium channel Kv1.3 are closely associated with breast cancer progression and apoptosis regulation, respectively. NPY receptors (NPYRs), which are overexpressed in breast tumors, contribute to tumor growth, migration, and angiogenesis.

View Article and Find Full Text PDF

Introduction: Epigenetic changes are important modulators of gene expression. The histone acetyltransferase gene non-derepressible 5 (Gcn5) is emerging as a pivotal epigenetic player in metabolism and cancer, yet its role in obesity and cardiovascular disease remains elusive.

Aims: To investigate Gcn5 role in obesity-related endothelial dysfunction.

View Article and Find Full Text PDF

S100A8/A9-MCAM signaling promotes gastric cancer cell progression via ERK-c-Jun activation.

In Vitro Cell Dev Biol Anim

September 2025

Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama, 700-8558, Japan.

S100 protein family members S100A8 and S100A9 function primarily as a heterodimer complex (S100A8/A9) in vivo. This complex has been implicated in various cancers, including gastric cancer (GC). Recent studies suggest that these proteins play significant roles in tumor progression, inflammation, and metastasis.

View Article and Find Full Text PDF