98%
921
2 minutes
20
Recent experimental observations have shown evidence of an unexpected sudden drop-off in the dense core vesicles (DCVs) content at the ends of certain types of axon endings. This article seeks to determine whether these observations may be explained without modifying the parameters characterizing the ability of distal en passant boutons to capture and accumulate DCVs. We developed a mathematical model that is based on the conservation of captured and transiting DCVs in boutons. The model consists of 77 ordinary differential equations and is solved using a standard Matlab solver. We hypothesize that the drop in DCV content in distal boutons is due to an insufficient supply of anterogradely moving DCVs coming from the soma. As anterogradely moving DCVs are captured (and eventually destroyed) in more proximal boutons on their way to the end of the terminal, the fluxes of anterogradely moving DCVs between the boutons become increasingly smaller, and the most distal boutons are left without DCVs. We tested this hypothesis by modifying the flux of DCVs entering the terminal and found that the number of most distal boutons left unfilled increases if the DCV flux entering the terminal is decreased. The number of anterogradely moving DCVs in the axon can be increased either by the release of a portion of captured DCVs into the anterograde component or by an increase of the anterograde DCV flux into the terminal. This increase could lead to having enough anterogradely moving DCVs such that they could reach the most distal bouton and then turn around by changing molecular motors that propel them. The model suggests that this could result in an increased concentration of resident DCVs in distal boutons beginning with bouton 2 (the most distal is bouton 1). This is because in distal boutons, DCVs have a larger chance to be captured from the transiting state as they pass the boutons moving anterogradely and then again as they pass the same boutons moving retrogradely.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cnm.3523 | DOI Listing |
Oxytocin receptors (OTR) within the extended amygdala and nucleus accumbens have been implicated in modulating social behaviors, particularly following stress. The effects of OTR could be mediated by modulating the activity of pre-synaptic axon terminals or via post-synaptic neurons or glia. Using a viral-mediated CRISPR/Cas9 gene editing system in California mice ( ), we selectively knocked down OTR in the anteromedial bed nucleus of the stria terminalis (BNST) or the nucleus accumbens (NAc) to examine their roles modulating social approach and vigilance behaviors.
View Article and Find Full Text PDFDevelopment
July 2025
Key Laboratory of Developmental Genes and Human Diseases, Ministry of Education, Department of Physiology, School of Medicine, Southeast University, Nanjing 210009, China.
Twenty types of GABAergic interneurons form intricate networks to fine-tune neural circuits in the brain. Parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons, which are the two largest populations of neocortical interneurons, innervate the soma and/or proximal dendrites, and distal dendrites of pyramidal neurons, respectively. Using PV- and SST-specific knockout mouse models, we show that PV+ interneurons require FGFR2, which responds to FGF7, to drive PV+ inhibitory presynaptic maturation on perisomatic regions of Layer V pyramidal neurons.
View Article and Find Full Text PDFJ Physiol
July 2025
Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
High-frequency mossy fibre (MF) inputs trigger a sustained increase in excitability to perforant pathway (PP) inputs in CA3 pyramidal cells (CA3-PC) by reducing Kv1.2 levels at distal apical dendrites, known as long-term potentiation of intrinsic excitability (LTP-IE). LTP-IE enhances excitatory postsynaptic potential (EPSP)-to-spike coupling at PP synapses, facilitating Hebbian LTP of synaptic weights.
View Article and Find Full Text PDFFront Neural Circuits
August 2025
Department of Neurobiology, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
A strong repetitive stimulus can occasionally enhance axonal excitability, leading to the generation of afterdischarge. This afterdischarge outlasts the stimulus period and originates either from the physiological spike initiation site, typically the axon initial segment, or from ectopic sites for spike generation. One of the possible mechanisms underlying the stimulus-induced ectopic afterdischarge is the local depolarization due to accumulated potassium ions surrounding the axonal membranes of the distal portion.
View Article and Find Full Text PDFCell Tissue Res
February 2025
Department of Anatomical, Histological, Forensic Medicine and Orthopaedics Sciences, Sapienza University of Rome, Via Alfonso Borelli 50 - 00161, Rome, Italy.
Alpha-synuclein (α-syn) is widely expressed in presynaptic neuron terminals, and its structural alterations play an important role in the pathogenesis of Parkinson's disease (PD). Aggregated α-syn has been found in brain, in the peripheral nerves of the enteric nervous system (ENS) and in the intestinal neuroendocrine cells during synucleinopathies and inflammatory bowel disorders. In the present study, we evaluated the histomorphological features of murine colon with 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis, a common model of colitis.
View Article and Find Full Text PDF