Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Twenty types of GABAergic interneurons form intricate networks to fine-tune neural circuits in the brain. Parvalbumin-positive (PV+) and somatostatin-positive (SST+) interneurons, which are the two largest populations of neocortical interneurons, innervate the soma and/or proximal dendrites, and distal dendrites of pyramidal neurons, respectively. Using PV- and SST-specific knockout mouse models, we show that PV+ interneurons require FGFR2, which responds to FGF7, to drive PV+ inhibitory presynaptic maturation on perisomatic regions of Layer V pyramidal neurons. In contrast, SST+ interneurons rely on both FGFR1 and FGFR2, which respond to FGF10 or FGF22, to promote SST+ inhibitory presynaptic maturation on distal dendrites of pyramidal neurons in cortical Layer I. Mechanistically, FGF-FGFR signaling sustains VGAT protein levels in interneurons through PP2A and Akt pathways. Together, these findings demonstrate that distinct FGF ligand-receptor combinations regulate inhibitory presynaptic differentiation by PV+ and SST+ interneurons, contributing to the formation of compartment-specific synaptic patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1242/dev.204532 | DOI Listing |