98%
921
2 minutes
20
Cannabinoid receptor interacting protein 1a (CRIP1a) modulates CB cannabinoid receptor G-protein coupling in part by altering the selectivity for Gα subtype activation, but the molecular basis for this function of CRIP1a is not known. We report herein the first structure of CRIP1a at a resolution of 1.55 Å. CRIP1a exhibits a 10-stranded and antiparallel β-barrel with an interior comprised of conserved hydrophobic residues and loops at the bottom and a short helical cap at the top to exclude solvent. The β-barrel has a gap between strands β8 and β10, which deviates from β-sandwich fatty acid-binding proteins that carry endocannabinoid compounds and the Rho-guanine nucleotide dissociation inhibitor predicted by computational threading algorithms. The structural homology search program DALI identified CRIP1a as homologous to a family of lipidated-protein carriers that includes phosphodiesterase 6 delta subunit and Unc119. Comparison with these proteins suggests that CRIP1a may carry two possible types of cargo: either (i) like phosphodiesterase 6 delta subunit, cargo with a farnesyl moiety that enters from the top of the β-barrel to occupy the hydrophobic interior or (ii) like Unc119, cargo with a palmitoyl or a myristoyl moiety that enters from the side where the missing β-strand creates an opening to the hydrophobic pocket. Fluorescence polarization analysis demonstrated CRIP1a binding of an N-terminally myristoylated 9-mer peptide mimicking the Gα N terminus. However, CRIP1a could not bind the nonmyristolyated Gα peptide or cargo of homologs. Thus, binding of CRIP1a to Gαi proteins represents a novel mechanism to regulate cell signaling initiated by the CB receptor.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8446797 | PMC |
http://dx.doi.org/10.1016/j.jbc.2021.101099 | DOI Listing |
Pharmacol Biochem Behav
September 2025
Neuroscience Research Center, Institute of Neuroscience and Cognition, Shahid Beheshti University of Medical Sciences, Tehran, Iran; School of Cognitive Sciences, Institute for Research in Fundamental Sciences, Tehran, Iran; Department of Basic Sciences, Iranian Academy of Medical Sciences, Tehran,
Methamphetamine (METH) is a highly addictive psychostimulant, and despite its widespread abuse, there are no FDA-approved treatments for METH use disorder (MUD). Cannabidiol (CBD), a non-psychoactive cannabinoid, has shown promise in reducing behaviors linked to psychostimulant use, including METH. However, the underlying neurobiological mechanisms remain unclear.
View Article and Find Full Text PDFPharmacol Res Perspect
October 2025
Department of Nutritional Sciences, University of Georgia, Athens, Georgia, USA.
Exogenous cannabinoids have long been known to promote eating. However, the underlying mechanisms have not been completely elucidated, which is critical to understanding their utility. The orexin/hypocretin (OH) system of the lateral hypothalamus (LHA) has known anatomical, biochemical, and physiological interactions with the endocannabinoid system, and has an established role in promoting appetitive behavior; yet, it is still unknown if the OH system mediates food intake following cannabinoid administration.
View Article and Find Full Text PDFThe endocannabinoid (eCB) system-comprising cannabinoid receptors, eCBs (anandamide- AEA, 2-arachidonoylglycerol-2-AG) and related -acylethanolamines (NAEs; palmitoylethanolamide-PEA, and oleoylethanolamide-OEA), and metabolizing enzymes (e.g., fatty acid amide hydrolase; FAAH)-modulates nociceptive circuits in rodents.
View Article and Find Full Text PDFClin Toxicol (Phila)
August 2025
Clinical Toxicology Unit, Princess Alexandra Hospital, Brisbane, Australia.
Introduction: Seizures are a marker of severe toxicity following overdose. Research characterising toxicological seizures is limited. We aim to study toxicological seizures, causative agents, and recurrence.
View Article and Find Full Text PDFJ Oral Rehabil
September 2025
Université Paris Cité and Sorbonne Paris Nord, Montrouge, France.
Background: Burning Mouth Syndrome (BMS) is an idiopathic condition characterised by chronic oral burning pain without clinically evident lesions. Despite its prevalence and impact on quality of life, the pathophysiology of BMS remains poorly understood, limiting diagnostic and therapeutic options.
Objective: To systematically review histological, morphological and cytological changes in oral tissues of BMS patients, with a focus on epithelial cells and nerve fibres, to identify potential biomarkers and inform future research directions.