Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sustainable management of freshwater and pesticide use is essential for mitigating the impacts of intensive agriculture in the context of a changing climate. To better understand how climate change will affect the vulnerability of freshwater ecosystems to chemical pollutants, more empirical evidence is needed on the combined effects of climatic and chemical stressors in environmentally realistic conditions. Our experiment provides the first empirical evaluation of stream macroinvertebrate community dynamics in response to one of the world's most widely used insecticides, imidacloprid, and increased water temperature. In a 7-week streamside experiment using 128 flow-through circular mesocosms, we investigated the effects of pulsed imidacloprid exposure (four environmentally relevant levels between 0 and 4.6 µg/L) and raised water temperature (ambient, 3°C above) on invertebrate communities representative of fast- and slow-flowing microhabitats. Invertebrate drift and insect emergence were monitored during three pesticide pulses (10 days apart), and benthic invertebrate communities were sampled after 24 days of heating and pesticide manipulations. All three manipulated factors strongly affected drift community composition. The first imidacloprid pulse and increased temperature had a greater impact on communities in fast-flowing mesocosms, which contained more pollution-sensitive EPT taxa (mayflies, stoneflies and caddisflies). Heating and imidacloprid caused increased emigration by drift, weak reductions in emergence, and negatively affected the benthic community. The combined effect of stressor manipulations and a 10-day natural heatwave drastically reduced relative abundances of EPT and insects overall and caused a shift to oligochaete-, crustacean- and gastropod-dominated communities. Contrary to our hypothesis, the very high yet realistic water temperatures reached in our experiment meant the negative effects of imidacloprid were clearest at ambient temperatures and fast flow. These findings demonstrate the potential combined impacts of imidacloprid contamination and heatwaves on freshwater invertebrate communities under future climate scenarios and highlight the need for more countries to take regulatory action to control neonicotinoid use.

Download full-text PDF

Source
http://dx.doi.org/10.1111/gcb.15856DOI Listing

Publication Analysis

Top Keywords

invertebrate communities
12
macroinvertebrate community
8
community dynamics
8
water temperature
8
imidacloprid
6
communities
5
warming imidacloprid
4
imidacloprid pulses
4
pulses determine
4
determine macroinvertebrate
4

Similar Publications

Evaluating the contribution of individual variation in parasite-mediated anorexia to trophic cascades.

Ecology

September 2025

Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut, USA.

Recent evidence suggests that parasite-mediated reductions in food intake (i.e., anorexia) in herbivores can trigger trophic cascades that increase producer biomass.

View Article and Find Full Text PDF

Host-microbe synergy in pesticide resilience: Rhodococcus-driven fitness compensation in chlorpyrifos-stressed Binodoxys communis.

Pestic Biochem Physiol

November 2025

Research Base of Zhengzhou University, State Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, Henan, China; State Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricu

Chlorpyrifos (CPF), a widely used organophosphate insecticide in cotton cultivation for controlling Aphis gossypii, has Binodoxys communis as the primary parasitic natural enemy of A. gossypii. This study evaluated the impact of two sub-lethal CPF concentrations (LC10 and LC30) on key biological parameters across two generations, transcriptomic responses, and symbiotic bacterial communities in B.

View Article and Find Full Text PDF

Efficient degradation mechanism of fomesafen by earthworms and gut degrading bacteria synthetic community.

Pestic Biochem Physiol

November 2025

College of Resources and Environment, Northeast Agricultural University, Harbin 150030, Heilongjiang, PR China. Electronic address:

Fomesafen (FSA), a diphenyl ether herbicide, causes toxicity to non-target organisms and subsequent crops. Vermi-remediation is advocated as an effective remediation method, but there has been no research on the isolation and mechanism of FSA-degradation strains from earthworm gut. In this study, three ecotypes of earthworms- Eisenia foetida (epigeic), Metaphire guillelmi (anecic), and Aporrectodea caliginosa (endogenic), were used to investigate the degradation mechanism of FSA in soil-plant-earthworm systems for the first time.

View Article and Find Full Text PDF

At methane seeps worldwide, syntrophic anaerobic methane-oxidizing archaea and sulfate-reducing bacteria promote carbonate precipitation and rock formation, acting as methane and carbon sinks. Although maintenance of anaerobic oxidation of methane (AOM) within seep carbonates has been documented, its reactivation upon methane exposure remains uncertain. Surface-associated microbes may metabolize sulfide from AOM, maintain carbonate anoxia, contribute to carbonate dissolution, and support higher trophic levels; however, these communities are poorly described.

View Article and Find Full Text PDF

Extrafloral nectaries (EFNs) are specialized plant glands that secrete nectar but are not related to pollination. Several ants feed on EFNs and, in exchange, they often attack herbivores, reducing the consumption of leaf tissue and floral parts, and enhancing plant performance. Although most empirical studies and reviews have demonstrated that ant visitation benefits EFN-bearing plants, many others have failed to show ants as protective partners.

View Article and Find Full Text PDF