98%
921
2 minutes
20
Adult-stem-cell-derived organoids model human epithelial tissues ex vivo, which enables the study of host-microbe interactions with great experimental control. This protocol comprises methods to coculture organoids with microbes, particularly focusing on human small intestinal and colon organoids exposed to individual bacterial species. Microinjection into the lumen and periphery of 3D organoids is discussed, as well as exposure of organoids to microbes in a 2D layer. We provide detailed protocols for characterizing the coculture with regard to bacterial and organoid cell viability and growth kinetics. Spatial relationships can be studied by fluorescence live microscopy, as well as scanning electron microscopy. Finally, we discuss considerations for assessing the impact of bacteria on gene expression and mutations through RNA and DNA sequencing. This protocol requires equipment for standard mammalian tissue culture, or bacterial or viral culture, as well as a microinjection device.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41596-021-00589-z | DOI Listing |
Adv Drug Deliv Rev
September 2025
J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, United States; Emerging Pathogens Institute, University of Florida, Gainesville, FL, United States. Electronic address:
The human microbiome plays a critical role in health and disease. Disruptions in microbiota composition or function have been implicated not only as markers but also as drivers of diverse pathologies, creating opportunities for targeted microbiome interventions. Advancing these therapies requires experimental models that can unravel the complex, bidirectional interactions between human tissue and microbial communities.
View Article and Find Full Text PDFInflamm Bowel Dis
September 2025
Gut Microbes and Health Programme, Quadram Institute Bioscience, Norwich Research Park, Norwich, United Kingdom.
Background: Intestinal cells receive incoming signals from neighboring cells and microbial communities. Upstream signaling pathways transduce these signals to reach transcription factors (TFs) that regulate gene expression. In inflammatory bowel disease (IBD), most single nucleotide polymorphisms (SNPs) are in non-coding genomic regions containing TF binding sites.
View Article and Find Full Text PDFFront Cell Infect Microbiol
September 2025
School of Veterinary Medicine, Population Health and Reproduction, University of California, Davis, Davis, CA, United States.
Stem cells and organoids have emerged as pivotal biological tools for biologically relevant models. Together, these models realistically recapitulate structural and functional elements of the organ, allowing for studies of cellular, molecular, and genetic features that underpin various diseases that are difficult to observe in low-biomass tissues. Stem cells, and more recently organoids, have been applied as regenerative therapies.
View Article and Find Full Text PDFGut Microbes
December 2025
Department of Neuroscience, Psychology, Drug Research and Child Health - NEUROFARBA - Pharmacology and Toxicology Section, University of Florence, Florence, Italy.
Chronic gastrointestinal pain is a hallmark of most intestinal pathologies, yet effective treatments remain elusive given the complexity of the underlying mechanisms. Aiming to investigate the intestinal epithelium contribution to visceral pain modulation in dysbiosis context, we first demonstrated that intracolonic instillation of microbe-free fecal supernatants from mice with post-inflammatory dysbiosis induced by dextran sodium sulfate (FS) provokes visceral hypersensitivity in recipient mice. Epithelium involvement in the response to FS was analyzed through a novel approach comprising murine epithelial colon organoids and primary dorsal root ganglia (DRG) neurons.
View Article and Find Full Text PDFCell Rep
September 2025
M3 Research Center, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Department of Internal Medicine I, Faculty of Medicine, University of Tübingen, Tübingen, Germany; Cluster of Excellence EXC 2124 Controlling Microbes to Fight Infections, University of Tübingen, Tübingen, Germ
While several phylogenetically distinct bacterial taxa can predict responses to or improve cancer immunotherapies, the underlying mechanisms remain poorly understood. The use of microbes for microbial therapeutics is currently under intense research, yet safety and regulatory hurdles remain challenging. Thus, non-replicative bacterial-derived molecules or extracts provide promising alternatives.
View Article and Find Full Text PDF