Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The demand for biodegradable and renewable UV-shielding materials is ever increasing due to the rising concern for the environment. In this paper, biobased lignin was functionalized by polyhedral oligomeric silsesquioxane (POSS) with an epoxy substituent. Then the POSS decorated lignin (lignin-POSS) was mixed with polylactide (PLA) to act as UV-shielding filler by melt compounding. The SEM observation revealed that the presence of POSS contributed to improving the homogeneous dispersion of lignin-POSS in the PLA matrix with good compatibility when the content of lignin-POSS was lower than 5 wt%. The synergistic effects of lignin and POSS endowed PLA composite films with a good balance of UV-shielding ability and transparency in the visible light region. With the addition of 5 wt% lignin-POSS, the PLA composite film absorbed almost all UV irradiation across the entire UV spectrum. In addition, the presence of lignin-POSS could serve as a nucleating agent to increase the degree of crystallinity of PLA. The dynamical rheological tests revealed that the lignin-POSSS reduced the complex viscosity and storage modulus of PLA composites, improving the flowability of PLA composites. This work presents a viable pathway to prepare biodegradable and renewable UV-shielding materials for potential packaging applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2021.08.033DOI Listing

Publication Analysis

Top Keywords

biodegradable renewable
12
renewable uv-shielding
12
uv-shielding materials
8
lignin-poss pla
8
pla composite
8
pla composites
8
pla
7
uv-shielding
5
poss
5
lignin-poss
5

Similar Publications

The sanitary napkin market is flourishing continuously due to increasing self-hygiene awareness in females. The commercially available sanitary napkins are mostly synthesized using petroleum based raw materials which are non-biodegradable in nature. With the growing global trend towards the adoption of eco-friendly, biodegradable and renewable raw materials, researchers are trying to design and manufacture sanitary napkins with natural, bio-based materials ensuring customer's comfort and healthcare.

View Article and Find Full Text PDF

The sustainable synthesis of bio-based monomers from renewable biomass intermediates is a central goal in green chemistry and biorefinery innovation. This study introduces a synergistic catalytic-enzymatic strategy for the efficient and eco-friendly oxidation of 5-hydroxymethylfurfural (5-HMF) into 2,5-furandicarboxylic acid (FDCA), a key monomer for next-generation biodegradable plastics. The catalytic phase employed non-noble metal catalysts, MnO and Co-Mn supported on activated carbon (Co-Mn/AC), under mild batch reaction conditions at 90 °C.

View Article and Find Full Text PDF

Cellulosic Flexible Electronic Materials: Recent Advances in Structural Design, Functionalization, and Smart Applications.

Macromol Rapid Commun

September 2025

Key Laboratory of Bio-based Material Science and Technology of Ministry of Education, Northeast Forestry University, Harbin, P. R. China.

Rapid advancement of flexible electronics has generated a demand for sustainable materials. Cellulose, a renewable biopolymer, exhibits exceptional mechanical strength, customizable properties, biodegradability, and biocompatibility. These attributes are largely due to its hierarchical nanostructures and modifiable surface chemistry.

View Article and Find Full Text PDF

Sustainable bio-based film based on chitosan resin crosslinking with tannin, phytic acid and octadecylamine for food packaging application.

Int J Biol Macromol

September 2025

Yunnan Provincial Key Laboratory of Wood Adhesives and Glued Products, Southwest Forestry University, Kunming 650224, People's Republic of China. Electronic address:

Chitosan and tannin are both promising renewable materials for food packaging; however, their effectiveness is limited by incomplete interactions between them. Therefore, phytic acid and octadecylamine were employed to create chitosan-tannin-phytic acid-octadecylamine (CTPO) films that are flame-retardant, UV-resistant, antibacterial and hydrophobic for food packaging applications. The findings indicate that the CTPO film exhibited excellent hydrophobicity and mechanical properties, with a water contact angle of 133.

View Article and Find Full Text PDF

Cellulose is the most abundant renewable biomass resource on Earth, with good biodegradability and biocompatibility. In this study, a novel cellulose-based near-infrared fluorescent probe MN@NIR for ClO detection was developed by amination modification of microcrystalline cellulose (MCC), followed by the introduction of naphthalimide fluorophores and dicyanoisophorone groups. The probe MN@NIR exhibits excellent fluorescence properties with dual-emission peaks at 543 nm and 690 nm, the latter falling within the near-infrared (NIR) window.

View Article and Find Full Text PDF