Bergenin attenuates bleomycin-induced pulmonary fibrosis in mice via inhibiting TGF-β1 signaling pathway.

Phytother Res

State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China.

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Idiopathic pulmonary fibrosis (IPF) is a progressive lung disease characterized by epithelial cell damage, fibroblast activation, and collagen deposition. IPF has high mortality and limited therapies, which urgently needs to develop safe and effective therapeutic drugs. Bergenin, a compound derived from a variety of medicinal plants, has demonstrated multiple pharmacological activities including anti-inflammatory and anti-tumor, also acts as a traditional Chinese medicine to treat chronic bronchitis, but its effect on the pulmonary fibrosis is unknown. In this study, we demonstrated that bergenin could attenuate bleomycin (BLM)-induced pulmonary fibrosis in mice. In vitro studies indicated that bergenin inhibited the transforming growth factor-β1 (TGF-β1)-induced fibroblast activation and the extracellular matrix accumulation by inhibiting the TGF-β1/Smad signaling pathway. Further studies showed that bergenin could induce the autophagy formation of myofibroblasts by suppressing the mammalian target of rapamycin signaling and that bergenin could promote the myofibroblast apoptosis. In vivo experiments revealed that bergenin substantially inhibited the myofibroblast activation and the collagen deposition and promoted the autophagy formation. Overall, our results showed that bergenin attenuated the BLM-induced pulmonary fibrosis in mice by suppressing the myofibroblast activation and promoting the autophagy and the apoptosis of myofibroblasts.

Download full-text PDF

Source
http://dx.doi.org/10.1002/ptr.7239DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
20
fibrosis mice
12
bergenin
8
signaling pathway
8
fibroblast activation
8
activation collagen
8
collagen deposition
8
blm-induced pulmonary
8
bergenin inhibited
8
autophagy formation
8

Similar Publications

This study investigated the effects of Yttrium-90 (Y90) radioembolization in 8 rabbits, focusing on delivery accuracy, dosimetry, and pathological outcomes. Y90 was successfully delivered angiographically targeted via the pulmonary lower basal segmental arteries to all rabbits, with confirmation via PET/CT imaging and a lung target median of the mean dose 132.1Gy (range, 11.

View Article and Find Full Text PDF

Silicosis is a fatal occupational lung disease characterized by persistent inflammation and irreversible fibrosis. However, the pathogenesis of silicosis is currently unclear. In this study, a mouse model of silicosis was established by intranasal instillation of silica, and transcriptomic alterations in lung tissues were assessed by mRNA-sequencing.

View Article and Find Full Text PDF

Air pollution and diseases: signaling, G protein-coupled and Toll like receptors.

Pharmacol Ther

September 2025

Department of Molecular Pharmacology, University of Groningen, Groningen, the Netherlands; Groningen Research Institute for Asthma and COPD, GRIAC, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands. Electronic address:

Air pollution is a significant public health issue that impacts lung health, particularly in vulnerable populations such as children, the elderly, and individuals with pre-existing respiratory conditions. Both natural and anthropogenic sources of air pollution give rise to a variety of toxic compounds, including particulate matter (PM), ozone (O₃), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), carbon monoxide (CO), and polycyclic aromatic hydrocarbons (PAHs). Exposure to these pollutants is strongly associated with the development and exacerbation of respiratory diseases, including asthma, chronic obstructive pulmonary disease (COPD), lung cancer, and idiopathic pulmonary fibrosis (IPF).

View Article and Find Full Text PDF

Article I. metformin affects H1N1-induced apoptosis in lung epithelial cells by the miR-130a-5p-regulated PI3K/AKT signaling pathway.

Biochem Biophys Res Commun

August 2025

Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, Yunnan Province, China. Electronic address:

Background: H1N1 influenza virus can cause diffuse alveolar damage, such as pneumonia and pulmonary fibrosis, when it infects the respiratory tract. Metformin not only improves chronic inflammation but also has direct anti-inflammatory effects. Therefore, the focus of this study was on the molecular mechanism and regulatory mechanism of metformin against influenza virus in alleviating lung disease.

View Article and Find Full Text PDF

Evodiamine attenuates silica-induced pulmonary fibrosis via PI3K/AKT pathway suppression: Integrated computational and experimental validation.

Biochem Biophys Res Commun

September 2025

Guangdong Province Hospital for Occupational Diseases Prevention and Treatment, Guangzhou, China; School of Public Health, Southern Medical University, Guangzhou, China. Electronic address:

Background: Silicosis, a devastating occupational lung disease caused by silica dust inhalation, lacks effective treatment options. Evodiamine (Evo), a bioactive alkaloid, has demonstrated anti-fibrotic potential in various diseases; however, its efficacy in silicosis and underlying mechanisms remain elusive. This study aims to systematically investigate Evo's therapeutic effects and mechanisms against silicosis.

View Article and Find Full Text PDF