Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The Lateral Flow Immunoassay (LFIA) is by far one of the most successful analytical platforms to perform the on-site detection of target substances. LFIA can be considered as a sort of lab-in-a-hand and, together with other point-of-need tests, has represented a paradigm shift from sample-to-lab to lab-to-sample aiming to improve decision making and turnaround time. The features of LFIAs made them a very attractive tool in clinical diagnostic where they can improve patient care by enabling more prompt diagnosis and treatment decisions. The rapidity, simplicity, relative cost-effectiveness, and the possibility to be used by nonskilled personnel contributed to the wide acceptance of LFIAs. As a consequence, from the detection of molecules, organisms, and (bio)markers for clinical purposes, the LFIA application has been rapidly extended to other fields, including food and feed safety, veterinary medicine, environmental control, and many others. This review aims to provide readers with a 10-years overview of applications, outlining the trends for the main application fields and the relative compounded annual growth rates. Moreover, future perspectives and challenges are discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8348896PMC
http://dx.doi.org/10.3390/s21155185DOI Listing

Publication Analysis

Top Keywords

lateral flow
8
flow immunoassay
8
future perspectives
8
ten years
4
years lateral
4
immunoassay technique
4
technique applications
4
applications trends
4
trends challenges
4
challenges future
4

Similar Publications

Biophysically Constrained Dynamical Modelling of the Brain Using Multimodal Magnetic Resonance Imaging.

Brain Res Bull

September 2025

Department of Psychiatry, Keck School of Medicine, University of Southern California, Los Angeles, CA; Institute for the Developing Mind, Children's Hospital Los Angeles, Los Angeles, CA.

We propose a Biophysically Restrained Analog Integrated Neural Network (BRAINN), an analog electrical network that models the dynamics of brain function. The network interconnects analog electrical circuits that simulate two tightly coupled brain processes: (1) propagation of an action potential, and (2) regional cerebral blood flow in response to the metabolic demands of signal propagation. These two processes are modeled by two branches of an electrical circuit comprising a resistor, a capacitor, and an inductor.

View Article and Find Full Text PDF

Rapid detection of carbapenemases in multiresistant Gram-negative strains: evaluation of two tests.

Microbiol Spectr

September 2025

Institute for Medical Laboratory Diagnostics, Helios University Hospital, Witten/Herdecke University, Wuppertal, Germany.

Carbapenem-resistant organisms (CRO) have rapidly spread worldwide in recent years, posing a significant challenge to both human health and healthcare systems. Timely and accurate detection of CRO, especially carbapenemase-producing and non-fermenters, is crucial for clinical prevention and treatment of these infections. In the present study, we subjected more than 114 multidrug-resistant Gram-negative and non-fermenters to two tests for the timely detection of carbapenemases.

View Article and Find Full Text PDF

Accurate point-of-care tools are needed to detect early nonadherence to daily HIV regimens and support timely transitions to long-acting options. Emerging evidence suggests that females may require higher adherence than males to achieve equivalent protection. Our next-generation urine tenofovir assay showed high accuracy across sexes but lower urine drug levels among female participants.

View Article and Find Full Text PDF

Background And Aim: Bovine babesiosis, caused by , poses significant economic challenges to Kazakhstan's cattle industry. Early and accurate detection is crucial for interrupting transmission cycles, particularly in regions lacking advanced diagnostic infrastructure. This study aimed to develop a rapid lateral flow immunoassay (LFIA) using a recombinant C-terminal fragment of the recombinant rhoptry-associated protein 1 (rRap1) antigen for the serodiagnosis of bovine babesiosis.

View Article and Find Full Text PDF

Lumpy skin disease (LSD) is a viral disease that affects livestock and is caused by the lumpy skin disease virus (LSDV). An outbreak of LSD in any country can lead to acute economic damage for livestock owners. The significance of prompt and accurate diagnosis in managing this viral disease cannot be overstated.

View Article and Find Full Text PDF