Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Hybridization of nucleic acids (NAs) is a fundamental molecular mechanism that drives many cellular processes and enables new biotechnologies as well as therapeutics. However, existing methods that measure hybridization kinetics of nucleic acids are either performed at the ensemble level or constrained to non-native physiological conditions. Recent advances in 3D single-molecule tracking techniques break these limitations by allowing multiple annealing and melting events to be observed on a single oligonucleotide freely diffusing inside a live mammalian cell. This review provides an overview of diverse approaches to measuring NA hybridization kinetics at the single-molecule level and in live cells, and concludes with a synopsis of unresolved challenges and opportunities in the live-cell hybridization kinetics measurements. Important discoveries made by NA kinetics measurements and biotechnologies that can be improved with a deeper understanding of hybridization kinetics are also described.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8336926PMC
http://dx.doi.org/10.1016/j.cobme.2021.100305DOI Listing

Publication Analysis

Top Keywords

hybridization kinetics
20
nucleic acids
8
kinetics measurements
8
hybridization
6
kinetics
6
developments characterization
4
characterization nucleic
4
nucleic acid
4
acid hybridization
4
kinetics hybridization
4

Similar Publications

Phytochromes are photosensor proteins found in plants, fungi, and bacteria. They photoswitch between red light absorbing (Pr) and far-red light absorbing (Pfr) states. Thermal reversion in the dark, however, is an equally important factor in controlling their signaling levels.

View Article and Find Full Text PDF

A sensitive electrochemical glucose biosensor using ZrO₂@CNTs nanocomposite was developed for real-time metabolism monitoring for athletes. The nanocomposite was prepared by a simple ultrasound-assisted technique, and the glucose oxidase (GOx) was covalently immobilized to improve the biorecognition ability. CNTs treated with acid served as a highly conductive framework, and ZrO₂ nanoparticles can provide structural stability and catalytic performance, thus showing synergistic enhancement of electron transfer kinetics and enzyme loading capacity.

View Article and Find Full Text PDF

Mumps virus infection triggers early pro-inflammatory responses and impairs Leydig and Sertoli cell function in an ex vivo human testis model.

Hum Reprod

September 2025

Institut National de la Santé et de la Recherche Médicale, Ecole des Hautes Etudes en Santé Publique, Institut de recherche en santé, environnement et travail, Université de Rennes-UMR_S1085, Rennes, France.

Study Question: What is the direct effect of mumps virus (MuV) replication within the human testis on the tissue innate immune responses and testicular cell functions?

Summary Answer: MuV induces an early pro-inflammatory response in the human testis ex vivo and infects both Leydig cells and Sertoli cells, which drastically alters testosterone and inhibin B production.

What Is Known Already: Despite widespread vaccination efforts, orchitis remains a significant complication of MuV infection, especially in young men, which potentially results in infertility in up to 87% of patients with bilateral orchitis. Our understanding of MuV pathogenesis in the human testis has been limited by the lack of relevant animal models, impairing the development of effective treatments.

View Article and Find Full Text PDF

Sodium-ion batteries are promising candidates for large-scale energy storage due to their low cost and resource abundance. However, their cathode materials suffer from poor conductivity and limited cycling stability. Here, we report a Prussian blue (PB)-based cathode hybridized with carboxyl-functionalized carbon nanotubes (CNTs) via a glutamic acid-assisted in situ coordination route.

View Article and Find Full Text PDF

Next-Generation Food Drying: Specialized and Smart Approaches to Boost Efficiency and Quality.

Compr Rev Food Sci Food Saf

September 2025

Department of Life Science (Food Science and Technology Division), GITAM University, Visakhapatnam, Andhra Pradesh, India.

Drying is a critical unit operation in food processing, essential for extending shelf life, ensuring microbial safety, and preserving the nutritional and sensory attributes of food products. However, conventional convective drying techniques are often energy-intensive and lead to undesirable changes such as texture degradation, loss of bioactive compounds, and reduced product quality, thereby raising concerns regarding their sustainability and efficiency. In response, recent advancements have focused on the development of innovative drying technologies that offer energy-efficient, rapid, and quality-preserving alternatives.

View Article and Find Full Text PDF