Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Adipose-derived stem cells (ASCs) are multipotent mesenchymal stem cells characterized by their strong regenerative potential and low oxygen consumption. Macrophage migration inhibitory factor (MIF) is a multifunctional chemokine-like cytokine that is involved in tissue hypoxia. MIF is not only a major immunomodulator but also is highly expressed in adipose tissue such as subcutaneous adipose tissue of chronic non-healing wounds. In the present study, we investigated the effect of hypoxia on MIF in ASCs isolated from healthy versus inflamed adipose tissue. Human ASCs were harvested from 17 patients (11 healthy adipose tissue samples, six specimens from chronic non-healing wounds). ASCs were treated in a hypoxia chamber at <1% oxygen. ASC viability, MIF secretion as well as expression levels of MIF, its receptor CD74, hypoxia-inducible transcription factor-1α (HIF-1α) and activation of the AKT and ERK signaling pathways were analyzed. The effect of recombinant MIF on the viability of ASCs was determined. Finally, the effect of MIF on the viability and production capacity of ASCs to produce the inflammatory cytokines tumor necrosis factor (TNF), interleukin (IL)-6, and IL-1β was determined upon treatment with recombinant MIF and/or a blocking MIF antibody. Hypoxic treatment inhibited proliferation of ASCs derived from healthy or chronic non-healing wounds. ASCs from healthy adipose tissue samples were characterized by a low degree of MIF secretion during hypoxic challenge. In contrast, in ASCs from adipose tissue samples of chronic non-healing wounds, secretion and expression of MIF and CD74 expression were significantly elevated under hypoxia. This was accompanied by enhanced ERK signaling, while AKT signaling was not altered. Recombinant MIF did stimulate HIF-1α expression under hypoxia as well as AKT and ERK phosphorylation, while no effect on ASC viability was observed. Recombinant MIF significantly reduced the secretion of IL-1β under hypoxia and normoxia, and neutralizing MIF-antibodies diminished TNF-α and IL-1β release in hypoxic ASCs. Collectively, MIF did not affect the viability of ASCs from neither healthy donor site nor chronic wounds. Our results, however, suggest that MIF has an impact on the wound environment by modulating inflammatory factors such as IL-1β.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8334873PMC
http://dx.doi.org/10.3389/fphys.2021.638448DOI Listing

Publication Analysis

Top Keywords

adipose tissue
16
stem cells
12
macrophage migration
8
migration inhibitory
8
inhibitory factor
8
adipose-derived stem
8
hypoxia mif
8
chronic non-healing
8
non-healing wounds
8
tissue
5

Similar Publications

Background: Several studies have suggested that adult human dermal fibroblasts (HDFa) may be a potential alternative source to mesenchymal stem cells for cell therapies. This study aims to characterize HDFa, adipose-derived stem cells (ADMSCs) and dental pulp stem cells (DPSCs) to investigate their proliferation, differentiation potential, mitochondrial respiration, and metabolomic profile. We identified molecules and characteristics that would differentiate MSCs from different sources or confirm their uniformity.

View Article and Find Full Text PDF

Limited vascularization and ischemia are major contributors to the chronicity of wounds, such as ulcers and traumatic injuries, which impose significant medical, social, and economic burdens. These challenges are particularly pronounced in patients with spinal cord injury (SCI), a disabling condition associated with vascular dysfunction, infections, and impaired peripheral circulation, complicating the treatment of pressure injuries (PIs) and the success of reconstructive procedures like grafts and flaps. Regenerative medicine aims to address these issues by identifying effective cellular therapies to restore vascular beds.

View Article and Find Full Text PDF

Objective: Adipose-derived regenerative cells (ADRCs) are promising cell sources for damaged tissue regeneration. The efficacy of therapeutic angiogenesis with ADRC implantation in patients with critical limb ischemia has been demonstrated in clinical studies. There are several possible mechanisms in this process such as cytokines and microRNA.

View Article and Find Full Text PDF

Background: Bone marrow (BM) lesion differentiation remains challenging, and quantitative magnetic resonance imaging (MRI) may enhance accuracy over conventional methods. We evaluated the diagnostic value and inter-reader reliability of Dixon-based signal drop (%drop) and fat fraction percentage (%fat) as adjuncts to existing protocols.

Materials And Methods: In this prospective two-center study, 172 patients with BM signal abnormalities underwent standardized 1.

View Article and Find Full Text PDF

Objective: To analyze the filum terminale (FT) of children with tethered cord syndrome (TCS) and aborted fetuses without neurological disorders in order to investigate the expression of significantly differentially expressed proteins in the FT under both pathological and physiological conditions.

Methods: According to the inclusion and exclusion criteria, 35 FT samples were selected, and the samples were subjected to immunohistochemistry and H&E staining. The data were analyzed using one-way analysis of variance, and P < 0.

View Article and Find Full Text PDF