Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Ulcerative colitis (UC) is an inflammatory bowel disease (IBD) with a rising incidence worldwide. The precise aetiology is unclear, but aberrant regulatory T cell (Treg) responses have been documented in active UC patients. Follicular regulatory T cell (Tfr) is a recently identified subset of Treg cells. In this study, the role of ICOS in Tfr cells, which is a costimulatory molecule shown to stabilize and promote Treg differentiation, was investigated in UC patients. We found that with increasing UC severity, the frequency of ICOS CD4 T cells was increased, but the level of ICOS expression by ICOS CD4 T cells was decreased. ICOS cells were highly enriched in follicular regulatory T cells (Tfr), which is a subset of Treg cells characterized by CD25 CD127 CXCR5 Foxp3 phenotype. Anti-CD3, anti-CD3/CD28, or anti-CD3/ICOS had all significantly increased the expression of Foxp3 and IL-10, and among the three stimulation methods, anti-CD3/ICOS was most effective at enhancing Foxp3 and IL-10 expression. Moreover, anti-CD3/ICOS-stimulated Tfr cells could suppress conventional T cell proliferation in an IL-10-dependent manner. Interestingly, anti-CD3/ICOS stimulation was less effective in UC-Mild and UC-Active patients compared to that in healthy and UC-Remission patients. In addition, UC patients presented impairment in ICOS upregulation following anti-CD3 stimulation. Overall, these data indicated that ICOS Tfr cells were dysregulated in UC patients and the level of dysregulation was associated with the severity of UC, suggesting that ICOS Tfr cells could serve as a biomarker of the progression of UC.

Download full-text PDF

Source
http://dx.doi.org/10.1111/1440-1681.13568DOI Listing

Publication Analysis

Top Keywords

tfr cells
16
follicular regulatory
12
icos tfr
12
cells
11
icos
9
regulatory cells
8
ulcerative colitis
8
regulatory cell
8
subset treg
8
treg cells
8

Similar Publications

The fraction that the elderly represent in the world's population is growing rapidly; numerous alterations that impact all organs and systems, including the immune system, are related to aging. A complex process common in the elderly, known as immunosenescence, is characterized by a decreased ability to respond to vaccination as well as an increased risk of bacterial and viral infections, autoimmune, cardiovascular and neurodegenerative diseases. These processes are associated with alterations in the innate and adaptive immune system and lead to a condition of chronic low-grade inflammation, referred to as inflammaging.

View Article and Find Full Text PDF

YXQN Ameliorates Vascular Dementia in 2-VO Rats via Inhibition of Ferroptosis.

J Ethnopharmacol

September 2025

Department of Integration of Chinese and Western Medicine, School of Basic Medical Sciences, Peking University, Beijing, China; Academy of Integration of Chinese and Western Medicine, Peking University Health Science Center, Beijing, China; The Key Discipline for Integration of Chinese and Western B

Ethnopharmacological Relevance: YangXue QingNao Wan (YXQN) is a compound Chinese medicine comprising of 11 traditional Chinese medicinal herbs, including Angelica sinensis, Ligusticum chuanxiong, and Paeonia lactiflora, etc. Previous studies in our laboratory have demonstrated that YXQN improved cerebral microcirculation in hypertensive rats. However, its efficacy and underlying mechanisms in treating vascular dementia (VaD) remain unclear.

View Article and Find Full Text PDF

Residues 27T and 297A in VP2 contribute to the enhanced replication and pathogenicity of raccoon dog parvovirus.

J Virol

September 2025

Key Laboratory of Special Animal Epidemic Disease, Ministry of Agriculture, Chinese Academy of Agricultural Sciences, Institute of Special Animal and Plant Sciences, Changchun, China.

Raccoon dog parvovirus (RDPV) is a highly contagious pathogen causing severe hemorrhagic enteritis that is fatal in young raccoon dogs. Since 2016, epidemiological investigations have documented recurrent outbreaks of RDPV, exhibiting heightened virulence; however, the molecular mechanisms driving this increased pathogenicity remain poorly understood. In this study, an alignment of 67 complete RDPV sequences identified two high-frequency amino acid mutations at positions 27 and 297 in the VP2 capsid protein that distinguish RDPV strains from before and after the 2016 outbreak.

View Article and Find Full Text PDF

H9N2 influenza virus, a prevalent influenza A virus, causes acute lung injury through mitochondrial damage associated with oxidative stress. Transient receptor potential melastatin 2 (TRPM2) is a Ca permeable non-selective cation channel that can trigger oxidative stress via Ca overload. Excessive ROS generation leads to mitochondrial dysfunction and lipid peroxides accumulation, contributing to ferroptosis.

View Article and Find Full Text PDF

Effective therapies for Glioblastoma (GBM) are often challenging by virtue of the intracranial location of GBM tumors, molecular heterogeneity, high recurrence rate, and overall resistance to treatment. Therefore, we proposed the development of doxorubicin (DOX) loaded molecularly imprinted nanocomposites (DOX@MINPs-TRF/ChO) using transferrin (TRF) and cholesterol (ChO) as dual-template and Cu nanoparticles (Cu@BSNs) as a functional monomer for enhancing the treatment of GBM. The results showed that DOX@MINPs-TRF/ChO specifically and effectively adsorbed TRF in blood circulation and subsequently enhanced the brain tumor targeting capability specific binding with transferrin receptors (TfR) highly expressed on the surface of GL261 cells.

View Article and Find Full Text PDF