Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
This study aims to calculate the dose delivered to the upstream surface of a biocompatible flexible absorber covering lead for electron beam treatment of skin and subcutaneous tumour lesions for head and neck. Silicone (Ecoflex™ 00-30, Smooth-On, Easton, PA, USA) was used to cover the lead to absorb backscattered electrons from lead. A 3D printer (Zortrax M300, Zortrax, Olsztyn, Poland) was used to fabricate the lead shield. Analytic calculation, simplified Monte Carlo (MC) simulation, and detailed MC simulation which includes a modeling of metal-oxide-semiconductor field-effect transistor (MOSFET) detector were performed to determine the electron backscatter factor (EBF) for 6 MeV and 9 MeV electron beams of a Varian iX Silhouette. MCNP6.2 was used to calculate the EBF and corresponding measurements were carried out by using MOSFET detectors. The EBF was experimentally measured by the ratio of dose at the upstream surface of the silicone to the same point without the presence of the lead shield. The results derived by all four methods agreed within 2.8% for 6 MeV and 3.4% for 9 MeV beams. In detailed MC simulations, for 6 MeV, dose to the surface of 7-mm-thick absorber was 103.7 [Formula: see text] 1.9% compared to dose maximum (D) without lead. For 9 MeV, the dose to the surface of the 10-mm-thick absorber was 104.1 [Formula: see text] 2.1% compared to D without lead. The simplified MC simulation was recommended for practical treatment planning due to its acceptable calculation accuracy and efficiency. The simplified MC simulation was completed within 20 min using parallel processing with 80 CPUs, while the detailed MC simulation required 40 h to be done. In this study, we outline the procedures to use the lead shield covered by silicone in clinical practice from fabrication to dose calculation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s13246-021-01041-y | DOI Listing |