Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Here, we report the design and synthesis of a new class of fused heterocyclic alkynyl ligand-containing gold(iii) complexes, which show tunable emission colors spanning from the yellow to red region in the solid state and exhibit thermally activated delayed fluorescence (TADF) properties. These complexes display high photoluminescence quantum yields of up to 0.87 and short excited-state lifetimes in sub-microsecond timescales, yielding high radiative decay rate constants on the order of up to 10 s. The observation of the drastic enhancement in the emission intensity of the complexes with insignificant change in the excited-state lifetime upon increasing the temperature from 200 to 360 K indicates an increasing radiative decay rate. The experimentally estimated energy splitting between the lowest-lying singlet excited state (S) and the lowest-lying triplet excited state (T), Δ , is found to be as small as ∼0.03 eV (250 cm), comparable to the value of ∼0.05 eV (435 cm) obtained from computational studies. The delicate choice of the cyclometalating ligand and the fused heterocyclic ligand is deemed the key to induce TADF through the control of the energy levels of the intraligand and the ligand-to-ligand charge transfer excited states. This work represents the realization of highly emissive yellow- to red-emitting gold(iii) TADF complexes incorporated with fused heterocyclic alkynyl ligands and their applications in organic light-emitting devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8278967PMC
http://dx.doi.org/10.1039/d1sc02256cDOI Listing

Publication Analysis

Top Keywords

fused heterocyclic
12
thermally activated
8
activated delayed
8
delayed fluorescence
8
fluorescence tadf
8
organic light-emitting
8
light-emitting devices
8
heterocyclic alkynyl
8
radiative decay
8
decay rate
8

Similar Publications

Context: High-nitrogen polycyclic compounds have become a research hotspot in the design of new energetic molecules due to their dense nitrogen content, high positive enthalpy of formation, and good structural stability. In particular, the fused structures of triazole and triazine heterocycles can not only enhance energy output but also possess excellent thermal stability. This study focuses on three triazolotriazine energetic compounds: 3,7-dinitro-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine (TTX), 7-nitro-3-(1H-tetrazol-5-yl)-[1,2,4]triazolo[5,1-c][1,2,4]triazin-4-amine (compound 1), and 3,3'-dinitro-[7,7'-bi[1,2,4]triazolo[5,1-c][1,2,4]triazine]-4,4'-diamine (compound 2).

View Article and Find Full Text PDF

Dearomative Cyclization of Ynamides toward the Formation of Fused Diazabicycles.

Org Lett

September 2025

Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel.

We report a selective dearomative cyclization strategy for the synthesis of 3,4-fused diazabicycles from 3-substituted pyridyl ynamides. The method combines a chemo-, regio-, and stereoselective carbometalation with a regioselective dearomatization, enabling access to a broad range of diazabicyclic scaffolds with varied ring sizes. The protocol accommodates alkyl and aryl Grignard reagents, tolerates diverse functional groups, and supports stereodivergent synthesis, offering a versatile platform for constructing complex fused -heterocycles with potential relevance to medicinal chemistry.

View Article and Find Full Text PDF

α-Diazo compounds have long been recognized as versatile reagents in organic synthesis, traditionally employed in metallocarbene chemistry. Recent advances have expanded their scope beyond conventional carbene-based transformations, leading to diverse applications in heterocycle synthesis and functionalization strategies. This review highlights the evolution of α-diazo compounds as key reagents in modern synthetic methodologies, focusing on their unique reactivity patterns, including cycloadditions, homologations, ring expansions, and carbene-free functionalizations.

View Article and Find Full Text PDF

The enantioselective [4 + 4] cycloaddition for the construction of cyclooctanoids is a challenging transformation in organic chemistry. Herein, we present the first organocatalytic enantioselective [4 + 4] cycloaddition of furan ortho-quinodimethanes, activated by dearomatization of the heteroaromatic compound, which thereby allows for the cycloaddition with dienes. The [4 + 4] cycloaddition is catalyzed by a quinine-derived primary amine in combination with a chiral phosphoric acid and a carboxylic acid affording cyclooctanoids isolated as a single diastereoisomer in good yields and with up to 94% ee.

View Article and Find Full Text PDF

The generation of metal carbenes from readily available allenes represents a remarkable advance in metal carbene chemistry. However, most of these transformations are mainly restricted to the noble-metal catalysts (Au and Pt). Here, a copper-catalyzed desymmetric cyclization reaction of divinylallenes is described, enabling the practical and atom-economical synthesis of a diverse array of valuable triazolo-fused pyridazines and tetracyclic N-heterocycles by a presumable copper carbene intermediate and a highly selective 1,2-N shift process.

View Article and Find Full Text PDF