98%
921
2 minutes
20
Fanconi anemia (FA) is an inherited disorder characterized by diverse congenital malformations, progressive pancytopenia, and predisposition to hematological malignancies and solid tumors. The role of the Fanconi anemia pathway in DNA repair mechanisms and genome instability is well studied. However, the consequences of inherited mutations in genes encoding the FA proteins and the acquired mutations due to impaired DNA repair complex in immune cells are far from understood. Patients with FA show bone marrow failure (BMF) and have a higher risk of developing myelodysplasia (MDS) or acute myeloid leukemia (AML) which are directly related to having chromosomal instability in hematopoietic stem cells and their subsequent progeny. However, immune dysregulation can also be seen in FA. As mature descendants of the common lymphoid progenitor line, NK cells taken from FA patients are dysfunctional in both NK cell-mediated cytotoxicity and cytokine production. The molecular bases for these defects are yet to be determined. However, recent studies have provided directions to define the cause and effect of inherited and acquired mutations in FA patients. Here, we summarize the recent studies in the hematopoietic dysfunction, focusing on the impairment in the development and functions of NK cells in FA patients, and discuss the possible mechanisms and future directions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11536512 | PMC |
http://dx.doi.org/10.1615/CritRevImmunol.2021037644 | DOI Listing |
Neurol Res
September 2025
Henan Provincial People's Hospital, Department of Surgery of Spine and Spinal Cord, People's Hospital of Zhengzhou University, Zhengzhou, China.
Background: Immunotherapy holds significant yet underexplored potential for low-grade glioma (LGG) treatment. We therefore interrogated the role of Fanconi Anemia Complementation Group C (FANCC) as a novel immune checkpoint regulator given its spatial correlation with tumor microenvironments and clinical associations with immunosuppressive markers.
Objectives: FANCC is implicated in various tumor progressions; its role in LGG remains unexplored.
JCO Precis Oncol
September 2025
Department of Neurosurgery, Children's Hospital Affiliated to Shandong University, Jinan, China.
Purpose: Germ cell tumors (GCTs) are a heterogeneous group of neoplasms that predominantly affect adolescents and young adults. Notably, geographical disparities in GCT incidence exist, with higher rates observed in East Asia. Although numerous studies have established links between heterozygous germline mutations in Fanconi anemia (FA) genes and the development of certain human cancers, the association between germline pathogenic or likely pathogenic (P/LP) variants in FA genes and the relative risk of developing GCTs remains incompletely characterized.
View Article and Find Full Text PDFIntroduction: We recently identified variants in 10 genes that are members of either the p53 pathway or Fanconi Anemia Complex (FAC), regulators of the DNA repair (DNA damage response; DDR) in 17 cases with Pediatric Acute-Onset Neuropsychiatry Syndrome (PANS) or regression in autism spectrum disorder (ASD) and other neurodevelopmental disorders (NDD). We aimed to identify additional cases with genetic vulnerabilities in DDR and related pathways.
Methods: Whole exome sequencing (WES) data from 32 individuals were filtered and analyzed to identify ultrarare pathogenic or likely pathogenic variants.
Molecules
August 2025
Department of Chemistry, Oakland University, Rochester, MI 48309, USA.
Guanine-rich nucleic acid sequences can adopt G-quadruplex (G4) structures, which pose barriers to DNA replication and repair. The FANCJ helicase contributes to genome stability by resolving these structures, a function linked to its G4-binding site that features an AKKQ amino acid motif. This site is thought to recognize oxidatively damaged G4, specifically those containing 8-oxoguanine (8oxoG) modifications.
View Article and Find Full Text PDFChildren (Basel)
July 2025
Second Department of Pediatrics, Medical School, National and Kapodistrian University of Athens, "P&A Kyriakou" Children's Hospital, 11527 Athens, Greece.
: Fanconi Anemia (FA) is a rare disorder, characterized by chromosomal instability, congenital abnormalities, progressive bone marrow failure, and predisposition to cancer. FA is caused by pathogenic variants in any of the 23 () linked genes. : Retrospective analysis of 13 FA patients with a causative variant was performed.
View Article and Find Full Text PDF