Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

G protein-coupled receptors (GPCRs) are implicated in the regulation of fear and anxiety. GPCR signaling involves canonical G protein pathways but can also engage downstream kinases and effectors through scaffolding interactions mediated by β-arrestin. Here, we investigated whether β-arrestin signaling regulates anxiety-like and fear-related behavior in mice in response to activation of the GPCR δ-opioid receptor (δOR or DOR). Administration of β-arrestin-biased δOR agonists to male C57BL/6 mice revealed β-arrestin 2-dependent activation of extracellular signal-regulated kinases 1 and 2 (ERK1/2) in the dorsal hippocampus and amygdala and β-arrestin 1-dependent activation of ERK1/2 in the nucleus accumbens. In mice, β-arrestin-biased agonist treatment was associated with reduced anxiety-like and fear-related behaviors, with some overlapping and isoform-specific input. In contrast, applying a G protein-biased δOR agonist decreased ERK1/2 activity in all three regions as well as the dorsal striatum and was associated with increased fear-related behavior without effects on baseline anxiety. Our results indicate a complex picture of δOR neuromodulation in which β-arrestin 1- and 2-dependent ERK signaling in specific brain subregions suppresses behaviors associated with anxiety and fear and opposes the effects of G protein-biased signaling. Overall, our findings highlight the importance of noncanonical β-arrestin-dependent GPCR signaling in the regulation of these interrelated emotions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8497002PMC
http://dx.doi.org/10.1126/scisignal.aba0245DOI Listing

Publication Analysis

Top Keywords

erk signaling
8
fear-related behaviors
8
gpcr signaling
8
anxiety-like fear-related
8
fear-related behavior
8
β-arrestin 2-dependent
8
signaling
6
β-arrestin
5
β-arrestin-dependent erk
4
signaling reduces
4

Similar Publications

Purpose: We aimed to compare the effects of atelocollagen (AC) and individual growth factors on the expression of key molecular markers associated with tendon healing.

Methods: C2C12 myoblasts were cultured in Dulbecco's Modified Eagle Medium (DMEM) containing 5% fetal bovine serum (FBS) and treated with 1 nM or 10 nM of Atelocollagen (AC), bone morphogenetic protein-2 (BMP-2), transforming growth factor-beta 1 (TGF-β1), insulin-like growth factor-1 (IGF-1), or vascular endothelial growth factor (VEGF) for 5 days. After 5 days of treatment, cells were harvested from the culture medium, and Western blot analysis was performed to quantify the expression of phosphorylated extracellular signal-regulated kinase (p-ERK), Collagen type I (Col I), Collagen type Ⅲ (Col Ⅲ), and Tenascin C (TnC).

View Article and Find Full Text PDF

Roles of Extracellular Superoxide Dismutase in Regulating Cell Migration and Vesicle Trafficking in Dictyostelium and Mammalian Cells.

Dev Growth Differ

September 2025

Department of Biological Sciences, College of Arts, Sciences, and Education, Florida International University, Miami, Florida, USA.

Superoxide dismutases (SODs) are key regulators of reactive oxygen species (ROS) and redox balance. Although intracellular SODs have been extensively studied, growing attention has been directed toward understanding the roles of extracellular SODs in both Dictyostelium and mammalian systems. In Dictyostelium discoideum, SodC is a glycosylphosphatidylinositol (GPI)-anchored enzyme that modulates extracellular superoxide to regulate Ras, PI3K signaling, and cytoskeletal remodeling during directional cell migration.

View Article and Find Full Text PDF

Background And Aims: Liver metastasis significantly contributes to poor survival in patients with colorectal cancer (CRC), posing therapeutic challenges due to limited understanding of its mechanisms. We aimed to identify a potential target critical for CRC liver metastasis.

Methods: We analyzed the Gene Expression Omnibus (GEO) and the Cancer Genome Atlas (TCGA) databases and identified EphrinA3 (EFNA3) as a potential clinically relevant target.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway-also known as the RAS/RAF/MEK/ERK pathway-is a critical signalling cascade involved in regulating cell growth, proliferation, and survival. First discovered in the early 1980s, the pathway's extracellular signal-regulated kinase (ERK) subfamily was identified in the 1990s. The ERK family includes several isoforms-ERK1, ERK2, ERK3, ERK5, and ERK6-with ERK1 (MAPK3) and ERK2 (MAPK1) being the most well-characterised and playing central roles in MAPK signalling.

View Article and Find Full Text PDF

Unraveling the Pivotal Role of LncRNA DUXAP9 in Cancer: Current Progress and Future Perspectives.

Curr Drug Targets

September 2025

Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, 443002, China.

Double homeobox A pseudogene 9 (DUXAP9), also known as long intergenic non-coding RNA 1296 (LINC01296) and lymph node metastasis-associated transcript 1 (LNMAT1), is an emerging lncRNA encoded by a pseudogene. It has been reported to be upregulated in various tumor types and functions as an oncogenic factor. The high expression of DUXAP9 is closely related to clinical pathological features and poor prognosis in 16 types of malignant tumors.

View Article and Find Full Text PDF