Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Antimicrobial resistance is a significant threat to public health systems worldwide, prompting immediate attention to develop new therapeutic agents with novel mechanisms of action. Recently, two new cationic non-ribosomal peptides (CNRPs), laterocidine and brevicidine, were discovered from through a global genome-mining approach. Both laterocidine and brevicidine exhibit potent antimicrobial activity toward Gram-negative bacteria, including difficult-to-treat and colistin-resistant , and a low risk of resistance development. Herein, we report the first total syntheses of laterocidine and brevicidine via an efficient and high-yielding combination of solid-phase synthesis and solution-phase macrolactamization. The crucial depsipeptide bond of the macrolactone rings of laterocidine and brevicidine was established on-resin between the side-chain hydroxy group of Thr with Alloc-Gly-OH or Alloc-Ser(Bu)-OH, respectively. A conserved glycine residue within the lactone macrocycle is exploited for the initial immobilization onto the hyper acid-labile 2-chlorotrityl chloride resin, subsequently enabling an efficient solution-phase macrocyclization to yield laterocidine and brevicidine in 36% and 10% overall yields, respectively (with respect to resin loading). A biological evaluation against both Gram-positive and Gram-negative bacteria demonstrated that synthetic laterocidine and brevicidine possessed a potent and selective antimicrobial activity toward Gram-negative bacteria, in accordance with the isolated compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jnatprod.1c00222DOI Listing

Publication Analysis

Top Keywords

laterocidine brevicidine
28
gram-negative bacteria
12
biological evaluation
8
antimicrobial activity
8
activity gram-negative
8
laterocidine
7
brevicidine
7
total chemical
4
chemical synthesis
4
synthesis biological
4

Similar Publications

Brevicidine and laterocidine are macrocyclic lipodepsipeptides with selective activity against Gram-negative bacteria, including colistin-resistant strains. Previously, the macrocyclic core of these peptides was thought essential for antibacterial activity. In this study, we show that C-terminal amidation of linear brevicidine and laterocidine scaffolds, and substitution of the native Thr9, yields linear analogues that retain the potent antibacterial activity and low hemolysis of the parent compounds.

View Article and Find Full Text PDF

The unabated rise of antibiotic resistance has raised the specter of a post-antibiotic era and underscored the importance of developing new classes of antibiotics. The relacidines are a recently discovered group of nonribosomal lipopeptide antibiotics that show promising activity against Gram-negative pathogens and share structural similarities with brevicidine and laterocidine. While the first reports of the relacidines indicated that they possess a C-terminal five-amino acid macrolactone, an N-terminal lipid tail, and an overall positive charge, no stereochemical configuration was assigned, thereby precluding a full structure determination.

View Article and Find Full Text PDF

The brevicidine and laterocidine family of lipopeptide antibiotics exhibit strong activity against multidrug-resistant Gram-negative bacteria, while showing low propensity to induce resistance. Both peptides feature a branched lipid tail on the N-terminal residue, which for brevicidine is chiral. Here, we report the synthesis and biological evaluation of a library of brevicidine and laterocidine analogues wherein the N-terminal lipid is replaced with linear achiral fatty acids.

View Article and Find Full Text PDF

Brevicidine and laterocidine are two recently discovered lipopeptide antibiotics with promising antibacterial activity. Possessing a macrocyclic core, multiple positive charges, and a lipidated N-terminus, these lipopeptides exhibit potent and selective activity against Gram-negative pathogens, including polymyxin-resistant isolates. Given the low amounts of brevicidine and laterocidine accessible by fermentation of the producing microorganisms, synthetic routes to these lipopeptides present an attractive alternative.

View Article and Find Full Text PDF

Antimicrobial resistance is a significant threat to public health systems worldwide, prompting immediate attention to develop new therapeutic agents with novel mechanisms of action. Recently, two new cationic non-ribosomal peptides (CNRPs), laterocidine and brevicidine, were discovered from through a global genome-mining approach. Both laterocidine and brevicidine exhibit potent antimicrobial activity toward Gram-negative bacteria, including difficult-to-treat and colistin-resistant , and a low risk of resistance development.

View Article and Find Full Text PDF