Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The short half-life of existing prostate-specific membrane antigen (PSMA) tracers limits their time for internalization into tumor cells after injection, which is an essential prerequisite for robust detection of tumor lesions with low PSMA expression on PET/CT scans. Because of its longer half-life, the Zr-labeled ligand Zr-PSMA-DFO allows acquisition of PET scans up to 6 d after injection, thereby overcoming the above limitation. We investigated whether Zr-PSMA-DFO allowed more sensitive detection of weak PSMA-positive prostate cancer lesions. We selected 14 prostate cancer patients with biochemical recurrence who exhibited no PSMA-positive lesions on a PET scan acquired with existing PSMA tracers (Ga-PSMA-11, F-JK-PSMA-7). Within 5 wk after the negative scan result, we obtained a second PSMA PET scan using Zr-PSMA-DFO (117 ± 16 MBq, PET acquisition within 6 d of injection). Zr-PSMA-DFO detected 15 PSMA-positive lesions in 8 of 14 patients, who had a PET-negative reading of their initial PET scans with existing tracers. In these 8 patients, the new scans revealed localized recurrence of disease (3/8), metastases in lymph nodes (3/8), or lesions at distant sites (2/8). On the basis of these results, patients received lesion-targeted radiotherapies (5/8), androgen deprivation therapies (2/8), or no therapy (1/8). The plausibility of 14 of 15 lesions was supported by histology, clinical follow-up after radiotherapy, or subsequent imaging. Furthermore, comparison of the 15 Zr-PSMA-DFO-positive lesions with their correlates on the original PET scan revealed that established tracers exhibited mild accumulation in 7 of 15 lesions; however, contrast-to-noise ratios were too low for robust detection of these lesions (contrast-to-noise ratios, 2.4 ± 3.7 for established tracers vs. 10.2 ± 8.5 for Zr-PSMA-DFO, = 0.0014). The SUV of the 15 Zr-PSMA-DFO-positive lesions (11.5 ± 5.8) was significantly higher than the SUV on the original PET scans (4.7 ± 2.8, = 0.0001). Kidneys were the most exposed organ, with doses of 3.3 ± 0.7 mGy/MBq. The effective dose was 0.15 ± 0.04 mSv/MBq. In patients with weak PSMA expression, a longer period of time might be needed for ligand internalization than that offered by existing PSMA tracers to make lesions visible on PET/CT scans. Hence, Zr-PSMA-DFO might be of significant benefit to patients in whom the search for weak PSMA-positive lesions is challenging. Radiation exposure should be weighed against the potential benefit of metastasis-directed therapy or salvage radiotherapy, which we initiated in 36% (5/14) of our patients based on their Zr-PSMA-DFO PET scans.

Download full-text PDF

Source
http://dx.doi.org/10.2967/jnumed.121.262290DOI Listing

Publication Analysis

Top Keywords

pet scans
16
prostate cancer
12
psma tracers
12
lesions
12
psma-positive lesions
12
pet scan
12
patients
8
cancer patients
8
robust detection
8
psma expression
8

Similar Publications

Exploring seasonal fluctuations in dopamine D2/D3 receptor availability in healthy adults: A [C]PHNO PET study.

J Affect Disord

September 2025

Department of Radiology and Biomedical Imaging, Yale University, New Haven, CT, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA; Department of Neurology, Yale University, New Haven, CT, USA. Electronic address:

Purpose: Dopamine is a neurotransmitter implicated in functions ranging from motor control to cognitive performance. In humans, dopaminergic markers have been associated with seasonal symptomatic fluctuations. Here we investigated potential seasonal variations in dopamine D2/D3 receptor availability in healthy adults using [C]PHNO positron emission tomography (PET) imaging.

View Article and Find Full Text PDF

PET radiotracer targeting the complement C3a receptor.

Nucl Med Biol

September 2025

The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA. Electronic address:

Background: Positron-emission tomography (PET) imaging of the complement system could advance understanding of the innate immune system in central nervous system (CNS) diseases and development of new drugs. The goal of this study was to develop a PET radiotracer targeting the C3a receptor (C3aR) of the complement system.

Methods: C3aR radiotracer [F]1 was synthesized in one step.

View Article and Find Full Text PDF

Background And Objectives: The relationship between insomnia and cognitive decline is poorly understood. We investigated associations between chronic insomnia, longitudinal cognitive outcomes, and brain health in older adults.

Methods: From the population-based Mayo Clinic Study of Aging, we identified cognitively unimpaired older adults with or without a diagnosis of chronic insomnia who underwent annual neuropsychological assessments (z-scored global cognitive scores and cognitive status) and had quantified serial imaging outcomes (amyloid-PET burden [centiloid] and white matter hyperintensities from MRI [WMH, % of intracranial volume]).

View Article and Find Full Text PDF

FDG PET Findings in Rare Brain Sodium Channelopathy Associated with SCN2A Gene Mutation.

Clin Nucl Med

September 2025

Department of Nuclear Medicine & PET/CT, Mahajan Imaging & Labs.

SCN2A gene mutations, which affect the function of the voltage-gated sodium channel NaV1.2, are associated with a spectrum of neurological disorders, including epileptic encephalopathies and autism spectrum disorders. Advanced imaging modalities such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been instrumental in elucidating the neuroanatomic and functional alterations associated with these mutations.

View Article and Find Full Text PDF

Statistical parametric mapping: a catalyst for cognitive neuroscience.

Cereb Cortex

August 2025

Translational Neuromodeling Unit (TNU), Institute for Biomedical Engineering, University of Zurich & ETH  Zurich, Zurich, Switzerland.

Statistical Parametric Mapping (SPM) is a statistical framework and open source software package for neuroimaging data analysis. Originally created by Karl Friston in the early 1990s, it has been used by a vast number of scientific studies over the last three decades. SPM has not only revolutionized the analysis of neuroimaging data but also catalyzed the development of cognitive neuroscience.

View Article and Find Full Text PDF