Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
SO influences secondary organic aerosol (SOA) and organosulfates (OSs) formation but mechanisms remain elusive. This study focuses on this topic by investigating biogenic γ-terpinene ozonolysis under various SO and relative humidity (RH) conditions. With a constant SO concentration (∼110 ppb), the increase in RH transformed SO sinks from stabilized Criegee intermediates (sCIs) to peroxides in aerosol particles. The associated changes in particle acidity and liquid water content may collectively first lead to decreased and then increased SOA yield with increasing RH, with the turning point appearing at ∼30% RH. The abundance of most OSs formed under 45% RH was more than 5 times higher than that of OSs formed under 10% RH, possibly due to interactions of dissolved SO with hydroperoxides (ROOH) in SOA. ROOHs formed from the autoxidation processes of alkylperoxy radicals were proposed to be precursors for highly oxidized OSs (HOOSs) that decreased SOA volatility and showed a certain abundance in ambient aerosols. This study highlights that high RH potentially enhances the contribution of SO to OSs formation, and particularly, HOOSs formation during monoterpene ozonolysis in the atmosphere.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jpclett.1c01550 | DOI Listing |