98%
921
2 minutes
20
Background: The objective of this study was to determine the prevalence, proportion of encapsulated strains and antibiotic susceptibility of Haemophilus influenzae isolated from young children.
Methods: Children, 6 months to 30 months old, were prospectively enrolled from September 2019 to September 2020 at Rochester, NY, pediatric clinics. H. influenzae isolates from nasopharynx (NP) at healthy visits and disease isolates from NP and middle ear fluid (MEF) at onset of acute otitis media (AOM) were characterized by capsular typing, β-lactamase production and antibiotic susceptibility.
Results: Samples from 565 healthy visits and 130 AOM visits were collected. H. influenzae was detected 5.9% and 27% in the NP from healthy and AOM visits, respectively. In the MEF, H. influenzae was isolated in 43% of samples. Eight percent of H. influenzae isolates were encapsulated, 88% type f. Overall 39.7% of isolates were β-lactamase producing; 43% for MEF isolates. Ampicillin, trimethoprim/sulfamethoxazole, erythromycin and clarithromycin nonsusceptibility were found in more than 25% of isolates. None of the encapsulated H. influenzae isolates were positive for β-lactamase production or ampicillin nonsusceptibility. 9.2% of isolates were β-lactamase negative, ampicillin resistant (β-lactamase negative, ampicillin resistant + β-lactamase negative, ampicillin intermediate).
Conclusions: The prevalence of H. influenzae in the NP of young children is very low at times of health, but H. influenzae is highly prevalent in MEF at onset of AOM. Nontypeable H. influenzae accounts for >90% of all H. influenzae isolates. Type f predominated among encapsulated strains. β-lactamase production and antibiotic nonsusceptibility among H. influenzae strains isolated from the NP and MEF are common.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/INF.0000000000003171 | DOI Listing |
mSphere
September 2025
Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, USA.
The ferret model is widely used to study influenza A viruses (IAVs) isolated from multiple avian and mammalian species, as IAVs typically replicate in the respiratory tract of ferrets without the need for prior host adaptation. During standard IAV risk assessments, tissues are routinely collected from ferrets at a fixed time point post-inoculation to assess the capacity for systemic spread. Here, we describe a data set of virus titers in tissues collected from both respiratory tract and extrapulmonary sites 3 days post-inoculation from over 300 ferrets inoculated with more than 100 unique IAVs (inclusive of H1, H2, H3, H5, H7, and H9 IAV subtypes, both mammalian and zoonotic origin).
View Article and Find Full Text PDFJ Virol
September 2025
Laboratory of Ultrastructural Virology, Institute for Life and Medical Sciences, Kyoto University, Kyoto, Japan.
Double-stranded RNA (dsRNA), which induces an innate immune response against viral infections, is rarely detected in influenza A virus (IAV)-infected cells. Nevertheless, we previously reported that the influenza A viral ribonucleoprotein (vRNP) complex generates looped dsRNAs during RNA synthesis . This finding suggests that IAV possesses a specific mechanism for sequestering dsRNA within infected cells, thereby enabling viral evasion of the innate immune response.
View Article and Find Full Text PDFMed Sci Monit
September 2025
Departament of Virology, National Institute of Public Health, National Institute of Hygiene - National Research Institute, Warsaw, Poland.
BACKGROUND The SENTINEL influenza surveillance system has been used in Poland since 2004, incorporating both epidemiological and virological monitoring of influenza viruses. SENTINEL works in cooperation with general practitioners, 16 Voivodship Sanitary Epidemiological Stations (VSES), and the National Influenza Centre (NIC). NON-SENTINEL samples are collected from places that do not participate in the SENTINEL program.
View Article and Find Full Text PDFPneumonia (Nathan)
September 2025
Faculty of Medicine, Institute for Life Sciences, University of Southampton, Southampton, UK.
Background: The ongoing burden of mortality and morbidity associated with infections requires that monitoring of carriage epidemiology continues. Here, we present data from the annual, cross-sectional surveillance study in Southampton UK on serotype epidemiology and diversity, as well as carriage of other frequent colonisers of the respiratory tract in over 7000 children over a period of seventeen years (2006–2023).
Methods: Children were recruited from two sites: Site 1 - Southampton General Hospital, administered by University Hospital Southampton (UHS) NHS Foundation Trust and Site 2– a collection of community health care facilities within the Solent NHS Trust region.
BMJ Open
September 2025
Microbiology Laboratory, Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Mahosot Hospital, Vientiane, Lao People's Democratic Republic.
Objectives: Globally, the circulation of influenza and other seasonal respiratory viruses changed dramatically during the COVID-19 pandemic. This study aims to determine the trends of acute respiratory infections (ARIs) caused by SARS-CoV-2, influenza A, influenza B and respiratory syncytial viruses (RSVs) in patients presenting to hospitals in the Lao People's Democratic Republic (PDR) (Laos).
Design: Prospective surveillance study.