98%
921
2 minutes
20
The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients. To do so, we induce transcriptional shifts by antigenic stimulation in vitro and take advantage of natural T cell receptor (TCR) sequences of clonally expanded T cells as barcodes for 'reverse phenotyping'. This allows identification of SARS-CoV-2-reactive TCRs and reveals phenotypic effects introduced by antigen-specific stimulation. We characterize transcriptional signatures of currently and previously activated SARS-CoV-2-reactive T cells, and show correspondence with phenotypes of T cells from the respiratory tract of patients with severe disease in the presence or absence of virus in independent cohorts. Reverse phenotyping is a powerful tool to provide an integrated insight into cellular states of SARS-CoV-2-reactive T cells across tissues and activation states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8313584 | PMC |
http://dx.doi.org/10.1038/s41467-021-24730-4 | DOI Listing |
The respiratory viruses can concurrently or sequentially infect a host and influence the trajectory of each other. The underlying immune mechanisms are not well understood. Here, we investigated whether respiratory syncytial virus (RSV) infection affects host vulnerability to subsequent SARS-CoV-2 infection in two murine models of SARS-CoV-2 infection.
View Article and Find Full Text PDFFront Immunol
April 2025
School of Health and Biomedical Science, Royal Melbourne Institute of Technology University, Melbourne, VIC, Australia.
Introduction: This study presents an optimised cultured ELISpot protocol for detecting central memory T-cell interferon gamma (IFNγ) responses against SARS-CoV-2 peptides following an initial priming with either peptides, or whole spike protein.
Methods: Key variations optimised include the culture length, timing of exogenous survival signals (IL-2), and endpoint analysis modality and cell density to enhance assay sensitivity without compromising specificity for central memory T-cell IFNγ recall responses to cognate antigen.
Results: We noted a culture duration of 10 days, combined with a delayed IL-2 administration on day 5 to enhance assay sensitivity while maintaining response specificity towards cognate antigen when compared with shorter culture periods or earlier exogenous survival signal provision.
Mol Ther
July 2025
Access to Advanced Health Institute (formerly Infectious Disease Research Institute), Seattle, WA 98102, USA. Electronic address:
While mRNA vaccines have been effective in combating SARS-CoV-2, the waning of vaccine-induced antibody responses and lack of vaccine-induced respiratory tract immunity contribute to ongoing infection and transmission. In this work, we compare and contrast intranasal (i.n.
View Article and Find Full Text PDFCell Rep
April 2025
ISGlobal, Barcelona, Spain; Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain; CIBER Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain. Electronic address:
Immune memory is essential for the effectiveness of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccination. In the current context of the pandemic, with a diminished vaccine efficacy against emerging variants, it remains crucial to perform long-term studies to evaluate the durability and quality of immune responses. Here, we examined the antibody and memory B-cell responses in a cohort of 113 healthcare workers with distinct exposure histories over a 3-year period.
View Article and Find Full Text PDFSci Transl Med
September 2024
Université Paris Cité, INSERM U1151, CNRS UMR8253, Institut Necker Enfants Malades-INEM, F-75015 Paris, France.