Publications by authors named "Sebastian Jarosch"

Endoscopic healing (EH) is the major long-term treatment target for inflammatory bowel diseases (IBDs), mainly achieved by immune-suppressive therapies. However, the chronic and relapsing nature of the disease indicates a lifelong persistence of unknown tissue-associated IBD residues. Based on longitudinally collected gastrointestinal biopsies (n = 217) from pediatric patients with IBD (N = 32) and pediatric non-IBD controls (N = 5), we describe cellular, molecular, and microbial drivers of IBD that persist under EH in the terminal ileum and sigmoid colon.

View Article and Find Full Text PDF

Background And Aims: Chronic inflammation in inflammatory bowel disease (IBD) patients represents a risk factor for developing colitis-associated cancer (CAC). We previously linked the endoplasmic reticulum unfolded protein response (UPRER) signal transducer activating transcription factor 6 (ATF6) with spontaneous microbiota-dependent colonic adenoma development in mice expressing epithelial-specific activated ATF6 (nATF6IEC).

Methods: To investigate IBD-related risk factors in ATF6-mediated tumorigenesis, we crossed tumor-free monoallelic (tg/wt) nATF6IEC mice with interleukin-10 deficient mice (Il10-/-).

View Article and Find Full Text PDF

Neoantigen-specific T cell receptors (neoTCRs) promise safe, personalized anti-tumor immunotherapy. However, detailed assessment of neoTCR-characteristics affecting therapeutic efficacy is mostly missing. Previously, we identified diverse neoTCRs restricted to different neoantigens in a melanoma patient.

View Article and Find Full Text PDF

Despite advancements in antifibrotic therapy, idiopathic pulmonary fibrosis (IPF) remains a medical condition with unmet needs. Single-cell RNA sequencing (scRNA-seq) has enhanced our understanding of IPF but lacks the cellular tissue context and gene expression localization that spatial transcriptomics provides. To bridge this gap, we profiled IPF and control patient lung tissue using spatial transcriptomics, integrating the data with an IPF scRNA-seq atlas.

View Article and Find Full Text PDF

Cancer-specific TCF1 stem-like CD8 T cells can drive protective anticancer immunity through expansion and effector cell differentiation; however, this response is dysfunctional in tumours. Current cancer immunotherapies can promote anticancer responses through TCF1 stem-like CD8 T cells in some but not all patients. This variation points towards currently ill-defined mechanisms that limit TCF1CD8 T cell-mediated anticancer immunity.

View Article and Find Full Text PDF

Neuromyelitis optica is a paradigmatic autoimmune disease of the central nervous system, in which the water-channel protein AQP4 is the target antigen. The immunopathology in neuromyelitis optica is largely driven by autoantibodies to AQP4. However, the T cell response that is required for the generation of these anti-AQP4 antibodies is not well understood.

View Article and Find Full Text PDF

The microbiome is a predictor of clinical outcome in patients receiving allogeneic hematopoietic stem cell transplantation (allo-SCT). Microbiota-derived metabolites can modulate these outcomes. How bacteria, fungi and viruses contribute to the production of intestinal metabolites is still unclear.

View Article and Find Full Text PDF
Article Synopsis
  • Acute graft-versus-host disease (aGvHD) is a serious complication following allogeneic hematopoietic stem cell transplantation, yet its severity determinants are not fully understood.
  • By using advanced techniques like tissue imaging and RNA sequencing on gastrointestinal biopsies, researchers found that a diverse gut microbiome and certain beneficial bacteria help maintain regulatory T cells (Tregs), which are important for limiting inflammation.
  • The study also revealed that higher aGvHD severity is linked to the expansion of CD8 T cells across different gut areas, which inversely correlates with the presence of Tregs, suggesting that managing the microbiome could be a potential treatment to help control aGvHD.
View Article and Find Full Text PDF

Repetitive pathogen exposure leads to the dominant outgrowth of T cell clones with high T cell receptor (TCR) affinity to the relevant pathogen-associated antigens. However, low-affinity clones are also known to expand and form immunological memory. While these low-affinity clones contribute less immunity to the original pathogen, their role in protection against pathogens harboring immune escape mutations remains unclear.

View Article and Find Full Text PDF

Objective: infection is the most prevalent bacterial infection worldwide. Besides being the most important risk factor for gastric cancer development, epidemiological data show that infected individuals harbour a nearly twofold increased risk to develop colorectal cancer (CRC). However, a direct causal and functional connection between infection and colon cancer is lacking.

View Article and Find Full Text PDF

Engagement of the inhibitory T cell receptor programmed cell death protein 1 (PD-1) associates with dysfunctional states of pathogen- or tumor-specific T cells. Accordingly, systemic antibody-mediated blockade of PD-1 has become a central target for immunotherapies but is also associated with severe toxicities due to loss of peripheral tolerance. Therefore, selective ablation of PD-1 expression on adoptively transferred T cells through direct genetic knockout (KO) is currently being explored as an alternative therapeutic approach.

View Article and Find Full Text PDF

Background & Aims: Infection with Helicobacter pylori strongly affects global health by causing chronic gastritis, ulcer disease, and gastric cancer. Although extensive research into the strong immune response against this persistently colonizing bacterium exists, the specific role of CD8 T cells remains elusive.

Methods: We comprehensively characterize gastric H pylori-specific CD8 T-cell responses in mice and humans by flow cytometry, RNA-sequencing, immunohistochemistry, and ChipCytometry, applying functional analyses including T-cell depletion, H pylori eradication, and ex vivo restimulation.

View Article and Find Full Text PDF

The development of ultra-thin flat liquid sheets capable of running in vacuum has provided an exciting new target for X-ray absorption spectroscopy in the liquid and solution phases. Several methods have become available for delivering in-vacuum sheet jets using different nozzle designs. We compare the sheets produced by two different types of nozzle; a commercially available borosillicate glass chip using microfluidic channels to deliver colliding jets, and an in-house fabricated fan spray nozzle which compresses the liquid on an axis out of a slit to achieve collision conditions.

View Article and Find Full Text PDF

The importance of T cells in controlling SARS-CoV-2 infections has been demonstrated widely, but insights into the quality of these responses are still limited due to technical challenges. Indeed, understanding the functionality of the T-cell receptor (TCR) repertoire of a polyclonal antigen-specific population still requires the tedious work of T-cell cloning or TCR re-expression and subsequent characterization. In this work, we show that it is possible to discriminate highly functional and bystander TCRs based on gene signatures of T-cell activation induced by recent peptide stimulation.

View Article and Find Full Text PDF

We experimentally study the interaction between intense infrared few-cycle laser pulses and an ultrathin (∼2 µm) flat liquid sheet of isopropanol running in vacuum. We observe a rapid decline in transmission above a critical peak intensity of 50 TW/cm of the initially transparent liquid sheet, and the emission of a plume of material. We find both events are due to the creation of a surface plasma and are similar to processes observed in dielectric solids.

View Article and Find Full Text PDF
Article Synopsis
  • * A specific subset of CD62L T cells, which are transcriptionally distinct, retains long-term growth potential and can regenerate exhausted T cells, making them crucial for maintaining antiviral immunity during chronic infections.
  • * The transcription factor MYB plays a key role in both the development of CD62L T cells and controlling their function, regulating aspects of exhaustion and the ability to respond to therapies that target the PD-1 pathway.
View Article and Find Full Text PDF

T cell receptor (TCR) avidity is assumed to be a major determinant of the spatiotemporal fate and protective capacity of tumor-specific T cells. However, monitoring polyclonal T cell responses with known TCR avidities in vivo over space and time remains challenging. Here, we investigated the fate and functionality of tumor neoantigen-specific T cells with TCRs of distinct avidities in a well-established, reductionist preclinical tumor model and human patients with melanoma.

View Article and Find Full Text PDF

In this protocol, we describe the use of ChipCytometry to combine RNA hybridization and antibody staining for multiplexed tissue imaging of human formalin-fixed and paraffin-embedded tissue samples. The advantages of ChipCytometry are long-term storage for re-interrogation and advanced image quality by high dynamic range imaging of staining and background. A titrated pretreatment of tissue samples bypasses challenges because of the retrieval of antigens on coverslips and achieves an optimal staining quality at the minimal expense of tissue integrity.

View Article and Find Full Text PDF

Deciphering the spatial composition of cells in tissues is essential for detailed understanding of biological processes in health and disease. Recent technological advances enabled the assessment of the enormous complexity of tissue-derived parameters by highly multiplexed tissue imaging (HMTI), but elaborate machinery and data analyses are required. This severely limits broad applicability of HMTI.

View Article and Find Full Text PDF

The avidity of TCRs for peptide-major histocompatibility complexes (pMHCs) is a governing factor in how T cells respond to antigen. TCR avidity is generally linked to T-cell functionality and there is growing evidence for distinct roles of low and high avidity T cells in different phases of immune responses. While physiological immune responses and many therapeutic T-cell products targeting infections or cancers consist of polyclonal T-cell populations with a wide range of individual avidities, the role of T-cell avidity is usually investigated only in monoclonal experimental settings.

View Article and Find Full Text PDF

T cell immunity is crucial for control of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and has been studied widely on a quantitative level. However, the quality of responses, in particular of CD8 T cells, has only been investigated marginally so far. Here, we isolate T cell receptor (TCR) repertoires specific for immunodominant SARS-CoV-2 epitopes restricted to common human Leukocyte antigen (HLA) class I molecules in convalescent individuals.

View Article and Find Full Text PDF

Adoptive transfer of T cells expressing a transgenic T cell receptor (TCR) has the potential to revolutionize immunotherapy of infectious diseases and cancer. However, the generation of defined TCR-transgenic T cell medicinal products with predictable function still poses a major challenge and limits broader and more successful application of this "living drug." Here, by studying 51 different TCRs, we show that conventional genetic engineering by viral transduction leads to variable TCR expression and functionality as a result of variable transgene copy numbers and untargeted transgene integration.

View Article and Find Full Text PDF

Upon viral infection, natural killer (NK) cells expressing certain germline-encoded receptors are selected, expanded, and maintained in an adaptive-like manner. Currently, these are thought to differentiate along a common pathway. However, by fate mapping of single NK cells upon murine cytomegalovirus (MCMV) infection, we identified two distinct NK cell lineages that contributed to adaptive-like responses.

View Article and Find Full Text PDF

The in vivo phenotypic profile of T cells reactive to severe acute respiratory syndrome (SARS)-CoV-2 antigens remains poorly understood. Conventional methods to detect antigen-reactive T cells require in vitro antigenic re-stimulation or highly individualized peptide-human leukocyte antigen (pHLA) multimers. Here, we use single-cell RNA sequencing to identify and profile SARS-CoV-2-reactive T cells from Coronavirus Disease 2019 (COVID-19) patients.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers conducted a study to investigate the role of the priming site of T cells in determining their behavior and impact on immunopathology in different organs, particularly in a model of multiple sclerosis (MS).
  • They labeled T cells from different lymph nodes (inguinal and mesenteric) and found that these T cells displayed distinct characteristics and migration patterns when infiltrating the central nervous system (CNS).
  • The findings suggest that the site where helper T cells are primed could significantly influence their roles in health and disease, potentially leading to a better understanding of T cell biology.
View Article and Find Full Text PDF