98%
921
2 minutes
20
Introduction: Ileus is a common and distressing condition characterised by gut dysfunction after surgery. While a number of interventions have aimed to curtail its impact on patients and healthcare systems, ileus is still an unmet challenge. Electrical stimulation of the vagus nerve is a promising new treatment due to its role in modulating the neuro-immune axis through a novel anti-inflammatory reflex. The protocol for a feasibility study of non-invasive vagus nerve stimulation (nVNS), and a programme of mechanistic and qualitative studies, is described.
Methods And Analysis: This is a participant-blinded, parallel-group, randomised, sham-controlled feasibility trial (IDEAL Stage 2b) of self-administered nVNS. One hundred forty patients planned for elective, minimally invasive, colorectal surgery will be randomised to four schedules of nVNS before and after surgery. Feasibility outcomes include assessments of recruitment and attrition, adequacy of blinding and compliance to the intervention. Clinical outcomes include bowel function and length of hospital stay. A series of mechanistic substudies exploring the impact of nVNS on inflammation and bowel motility will inform the design of the final stimulation schedule. Semistructured interviews with participants will explore experiences and perceptions of the intervention, while interviews with patients who decline participation will explore barriers to recruitment.
Ethics And Dissemination: The protocol has been approved by the Tyne and Wear South National Health Service (NHS) Research Ethics Committee (19/NE/0217) on 2 July 2019. Feasibility, mechanistic and qualitative findings will be disseminated to national and international partners through peer-reviewed publications, academic conferences, social media channels and stakeholder engagement activities. The findings will build a case for or against progression to a definitive randomised assessment as well as informing key elements of study design.
Trial Registration Number: ISRCTN62033341.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296772 | PMC |
http://dx.doi.org/10.1136/bmjopen-2020-046313 | DOI Listing |
Int J Surg
September 2025
Rehabilitation Medicine Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People's Republic of China.
Aim: This study explores the evolving landscape of gastrectomy procedures in Japan, based on nationwide surveys conducted in 2014 and 2021. It highlights changes in surgical approaches, including a growing focus on minimally invasive and function-preserving procedures, as well as the increasing consideration of postoperative quality of life (QOL).
Methods: Two nationwide questionnaire surveys were conducted in 2014 and 2021, targeting members of the Japanese Society for Gastro-surgical Pathophysiology.
PLoS One
September 2025
Faculty of Psychology, Mental Health Research and Treatment Center, Ruhr University Bochum, Bochum, Germany.
Background: Eating disorders such as Anorexia Nervosa (AN) and Bulimia Nervosa (BN) were previously found to partly entail alterations in stress physiology including salivary cortisol (sC), and salivary alpha amylase (sAA) at rest and basal vagal tone (HF-HRV), compared to individuals without mental disorders or with mixed mental disorders (anxiety and depressive disorders), but corresponding data remain scarce and are not entirely consistent.
Method: HF-HRV, sC and sAA at rest were assessed in a female sample of 58 individuals with AN and 54 individuals with BN before and after psychotherapy and contrasted against measurements from 59 female individuals suffering from mixed disorders and 101female healthy controls.
Results: Values for sC were elevated in AN compared to all other groups, those for HF-HRV were highest in both AN and BN and lowest in mixed mental disorders and no differences were found at rest for sAA.
ACS Nano
September 2025
Department of Electrical and Computer Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea.
Vagus nerve stimulation (VNS) is a promising therapy for neurological and inflammatory disorders across multiple organ systems. However, conventional rigid interfaces fail to accommodate dynamic mechanical environments, leading to mechanical mismatches, tissue irritation, and unstable long-term interfaces. Although soft neural interfaces address these limitations, maintaining mechanical durability and stable electrical performance remains challenging.
View Article and Find Full Text PDFCell Rep
September 2025
Department of Biology, MIT, Cambridge, MA 02139, USA; Department of Brain and Cognitive Sciences, MIT, Cambridge, MA 02139, USA; Picower Institute for Learning and Memory, MIT, Cambridge, MA 02139, USA; Biology of Adversity Project, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA. Elect
The neural control of breathing is both dynamic and essential, ensuring life-sustaining gas exchange while protecting the respiratory system from harm. Peripheral neurons innervating the respiratory tract exhibit remarkable diversity, continuously relaying sensory feedback to the brain to regulate breathing, trigger protective reflexes such as coughing and sickness behaviors, and even influence emotional states. Understanding this airway-brain axis is especially critical given the increasing global burden of respiratory diseases, as it holds implications for both human health and broader brain-body interactions.
View Article and Find Full Text PDF