Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: We recently developed a model of stratified exercise therapy, consisting of (i) a stratification algorithm allocating patients with knee osteoarthritis (OA) into one of the three subgroups ('high muscle strength subgroup' representing a post-traumatic phenotype, 'low muscle strength subgroup' representing an age-induced phenotype, and 'obesity subgroup' representing a metabolic phenotype) and (ii) subgroup-specific exercise therapy. In the present study, we aimed to test the construct validity of this algorithm.

Methods: Data from five studies (four exercise therapy trial cohorts and one cross-sectional cohort) were used to test the construct validity of our algorithm by 63 a priori formulated hypotheses regarding three research questions: (i) are the proportions of patients in each subgroup similar across cohorts? (15 hypotheses); (ii) are the characteristics of each of the subgroups in line with their proposed underlying phenotypes? (30 hypotheses); (iii) are the effects of usual exercise therapy in the 3 subgroups in line with the proposed effect sizes? (18 hypotheses).

Results: Baseline data from a total of 1211 patients with knee OA were analyzed for the first and second research question, and follow-up data from 584 patients who were part of an exercise therapy arm within a trial for the third research question. In total, the vast majority (73%) of the hypotheses were confirmed. Regarding our first research question, we found similar proportions in each of the three subgroups across cohorts, especially for three cohorts. Regarding our second research question, subgroup characteristics were almost completely in line with the proposed underlying phenotypes. Regarding our third research question, usual exercise therapy resulted in similar, medium to large effect sizes for knee pain and physical function for all three subgroups.

Conclusion: We found mixed results regarding the construct validity of our stratification algorithm. On the one hand, it is a valid instrument to consistently allocate patients into subgroups that aligned our hypotheses. On the other hand, in contrast to our hypotheses, subgroups did not differ substantially in effects of usual exercise therapy. An ongoing trial will assess whether this algorithm accompanied by subgroup-specific exercise therapy improves clinical and economic outcomes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8296670PMC
http://dx.doi.org/10.1186/s12891-021-04485-1DOI Listing

Publication Analysis

Top Keywords

exercise therapy
32
construct validity
16
stratification algorithm
12
patients knee
12
subgroup' representing
12
usual exercise
12
algorithm allocating
8
allocating patients
8
knee osteoarthritis
8
exercise
8

Similar Publications

Heart failure (HF) is a multifactorial and pathophysiological complex syndrome, involving not only neurohormonal activation but also oxidative stress, chronic low-grade inflammation, and metabolic derangements. Central to the cellular defence against oxidative damage is nuclear factor erythroid 2-related factor 2 (Nrf2), a transcription factor that orchestrates antioxidant and cytoprotective responses. Preclinical in vitro and in vivo studies reveal that Nrf2 signalling is consistently impaired in HF, contributing to the progression of myocardial dysfunction.

View Article and Find Full Text PDF

Impact of muscle strength decline and exercise intervention on multimorbidity of chronic diseases in older adults.

Zhong Nan Da Xue Xue Bao Yi Xue Ban

May 2025

School of Sports Medicine and Rehabilitation, Beijing Sport University, Beijing 100084, China.

Multimorbidity of chronic diseases is one of the most common health issues among older adults, and the resulting demand for long-term medical care and management imposes a considerable burden on healthcare systems. Muscle strength, a core indicator of overall health status, is closely associated with the risk of developing multimorbidity of chronic diseases in older adults. Decline in muscle strength not only increases the risk of multimorbidity of chronic diseases but also interacts with it to exacerbate disease burden.

View Article and Find Full Text PDF

Objectives: To investigate the effects of formulated granules of (TGY) on motor deficits in a mouse model of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced subacute Parkinson's disease (PD) and explore the possible molecular mechanisms.

Methods: Ninety C57BL/6 mice were randomized equally into 6 groups, including a control group, a PD model group, a NEC-1 (6.5 mg/kg) treatment group, two TGY treatment groups at 5 and 2.

View Article and Find Full Text PDF

Quantifying Exercise Intensity to Predict Changes in Walking Capacity in People with Chronic Stroke.

Arch Phys Med Rehabil

September 2025

Department of Physical Therapy, University of Delaware, Newark, DE, USA; Biomechanics and Movement Science Program, University of Delaware, Newark, DE, USA. Electronic address:

Objective: To examine if exercise intensity, quantified as heart rate or training speed, predicts walking outcomes in people with chronic stroke.

Design: This is a secondary analysis from a larger randomized clinical trial ("PROWALKS"; NIH1R01HD086362).

Setting: Four, outpatient rehabilitation clinics.

View Article and Find Full Text PDF

Introduction: Frailty in older adults impairs Activities of Daily Living (ADL). While exercise interventions improve factors like muscle strength and physical function, their direct impact on ADL ability is inconsistent. This review aims to assess the effectiveness of exercise on ADL ability, identify the most beneficial interventions, and explore mediators.

View Article and Find Full Text PDF