Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Synchrony is broadly important to population and community dynamics due to its ubiquity and implications for extinction dynamics, system stability, and species diversity. Investigations of synchrony in community ecology have tended to focus on covariance in the abundances of multiple species in a single location. Yet, the importance of regional environmental variation and spatial processes in community dynamics suggests that community properties, such as species richness, could fluctuate synchronously across patches in a metacommunity, in an analog of population spatial synchrony. Here, we test the prevalence of this phenomenon and the conditions under which it may occur using theoretical simulations and empirical data from 20 marine and terrestrial metacommunities. Additionally, given the importance of biodiversity for stability of ecosystem function, we posit that spatial synchrony in species richness is strongly related to stability. Our findings show that metacommunities often exhibit spatial synchrony in species richness. We also found that richness synchrony can be driven by environmental stochasticity and dispersal, two mechanisms of population spatial synchrony. Richness synchrony also depended on community structure, including species evenness and beta diversity. Strikingly, ecosystem stability was more strongly related to richness synchrony than to species richness itself, likely because richness synchrony integrates information about community processes and environmental forcing. Our study highlights a new approach for studying spatiotemporal community dynamics and emphasizes the spatial dimensions of community dynamics and stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC9286696PMC
http://dx.doi.org/10.1002/ecy.3486DOI Listing

Publication Analysis

Top Keywords

spatial synchrony
20
species richness
20
synchrony species
16
community dynamics
16
richness synchrony
16
synchrony
10
richness
9
species
8
ecosystem stability
8
community
8

Similar Publications

Theory, manipulation experiments and observational studies on biodiversity and ecosystem functioning largely concur that higher intraspecific diversity may increase the overall productivity of populations, buffer against environmental change and stabilize long-term productivity. However, evidence comes primarily from small and short-lived organisms. We tested for effects of genetic diversity on variation in forest growth by combining long-term data on annual individual growth rate (basal area increment (BAI)) with estimates of intrapopulation genetic variation (based on RAD-seq SNPs) for 18 natural pedunculate oak populations.

View Article and Find Full Text PDF

Community composition as an overlooked driver of spatial population synchrony.

PNAS Nexus

September 2025

School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat St, Box 355020, Seattle, WA 98105, USA.

Animal populations often display coherent temporal fluctuations in their abundance, with far-ranging implications for species persistence and ecosystem stability. The key mechanisms driving spatial population synchrony include organismal dispersal, spatially correlated environmental dynamics (Moran effect) and concordant consumer-resource dynamics. Disentangling these mechanisms, however, is notoriously difficult in natural systems, and the extent to which the biotic environment (intensity and types of biotic interactions) mediates metapopulation dynamics remains a largely unanswered question.

View Article and Find Full Text PDF

The extent to which phenological synchrony between trophic levels may be disrupted by environmental change has been a topic of increased focus in recent years. Phenological associations between deciduous trees, phytophagous insects, and their consumers (e.g.

View Article and Find Full Text PDF

Nonpharmaceutical approaches based on gamma entrainment using sensory stimuli (GENUS) have shown promise in reducing Alzheimer's disease pathology in mouse models. While human studies remain limited, GENUS has been shown to alleviate aspects of neurodegeneration in patients with Alzheimer's disease. In this study, we analyze intracranial EEG data from 490 contacts across eleven patients with refractory epilepsy in response to three visual stimulation conditions.

View Article and Find Full Text PDF

Brain functional connectivity (FC), the temporal synchrony between brain networks, is essential to understand the functional organization of the brain and to identify changes due to neurological disorders, development, treatment, and other phenomena. Independent component analysis (ICA) is a matrix decomposition method used extensively for simultaneous estimation of functional brain topography and connectivity. However, estimation of FC via ICA is often sub-optimal due to the use of ad hoc estimation methods or temporal dimension reduction prior to ICA.

View Article and Find Full Text PDF