Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

We derive a noncentral [Formula: see text] power approximation for the Kenward and Roger test. We use a method of moments approach to form an approximate distribution for the Kenward and Roger scaled Wald statistic, under the alternative. The result depends on the approximate moments of the unscaled Wald statistic. Via Monte Carlo simulation, we demonstrate that the new power approximation is accurate for cluster randomized trials and longitudinal study designs. The method retains accuracy for small sample sizes, even in the presence of missing data. We illustrate the method with a power calculation for an unbalanced group-randomized trial in oral cancer prevention.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8294572PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0254811PLOS

Publication Analysis

Top Keywords

power approximation
12
kenward roger
12
approximation kenward
8
wald statistic
8
power
4
roger wald
4
wald test
4
test linear
4
linear mixed
4
mixed model
4

Similar Publications

Fixed-node diffusion quantum Monte Carlo (FN-DMC) is a widely trusted many-body method for solving the Schrödinger equation, known for its reliable predictions of material and molecular properties. Furthermore, its excellent scalability with system complexity and near-perfect utilization of computational power make FN-DMC ideally positioned to leverage new advances in computing to address increasingly complex scientific problems. Even though the method is widely used as a computational gold standard, reproducibility across the numerous FN-DMC code implementations has yet to be demonstrated.

View Article and Find Full Text PDF

Computationally Efficient Yet Quantitatively Accurate Scaled MP2 Protocols for the Prediction of Weak Interaction Energies in Complex Biological Systems.

ACS Omega

September 2025

Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Cd. Universitaria, 04510 Ciudad de Mexico, Mexico.

In this study, we introduce a set of novel computational strategies based on second-order Mo̷ller-Plesset perturbation theory (MP2), enhanced through acceleration techniques, such as the resolution of the identity (RI). These approaches are further refined via spin-component scaling (SCS), following Grimme's methodology, and are specifically calibrated for the quantitatively accurate prediction of weak interaction energiesinteractions that play a critical role in biological systems. Among the developed methods, three variants exhibit outstanding performance, surpassing the accuracy of several state-of-the-art, nondynamical electronic structure techniques.

View Article and Find Full Text PDF

Introduction: Accurately predicting tumor cell line responses to therapeutic drugs is essential for personalized cancer treatment. Current methods using bulk cell data fail to fully capture tumor heterogeneity and the complex mechanisms underlying treatment responses.

Methods: This study introduces a novel method, ATSDP-NET (Attention-based Transfer Learning for Enhanced Single-cell Drug Response Prediction), which combines bulk and single-cell data.

View Article and Find Full Text PDF

Patients' Acceptance and Intentions on Using Artificial Intelligence in Dental Diagnosis: Insights From Unified Theory of Acceptance and Use of Technology 2 Model.

Int Dent J

September 2025

Department of Periodontology, Oral Medicine and Oral Surgery, Institute for Dental and Craniofacial Sciences, Charité-University Medicine Berlin, Corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany; Department of Conservati

Introduction And Aims: Artificial intelligence (AI) is transforming dental care by enhancing diagnostic accuracy, efficiency, and patient experience. This study aimed to assess dental patients' acceptance, perceptions, and concerns regarding AI-powered diagnosis using the Unified Theory of Acceptance and Use of Technology 2 (UTAUT2) framework through structural equation modelling (SEM).

Methods: A cross-sectional study was conducted among dental patients at King Saud University Dental Hospital, Riyadh.

View Article and Find Full Text PDF

Cluster synchronization via graph Laplacian eigenvectors.

Chaos

September 2025

Department of Mathematics and Statistics, University of Vermont, Burlington, Vermont 05405, USA.

Almost equitable partitions (AEPs) have been linked to cluster synchronization in oscillatory systems, highlighting the importance of structure in collective network dynamics. We provide a general spectral framework that formalizes this connection, showing how eigenvectors associated with AEPs span a subspace of the Laplacian spectrum that governs partition-induced synchronization behavior. This offers a principled reduction of network dynamics, allowing clustered states to be understood in terms of quotient graph projections.

View Article and Find Full Text PDF