Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Microscopic analysis of mucus quantity and composition is crucial in research and diagnostics on muco-obstructive diseases. Currently used image-based methods are unable to extract concrete numeric values of mucosal proteins, especially on the expression of the key mucosal proteins MUC5AC and MUC5B. Since their levels increase under pathologic conditions such as extensive exposure to cigarette smoke, it is imperative to quantify them to improve treatment strategies of pulmonary diseases. This study presents a simple, image-based, and high-processing computational method that allows determining the ratio of MUC5AC and MUC5B within the overall airway mucus while providing information on their spatial distribution. The presented pipeline was optimized for automated downstream analysis using a combination of bright field and immunofluorescence imaging suitable for tracheal and bronchial tissue samples, and air-liquid interface (ALI) cell cultures. To validate our approach, we compared tracheal tissue and ALI cell cultures of isolated primary normal human bronchial epithelial cells derived from smokers and nonsmokers. Our data indicated 18-fold higher levels of MUC5AC in submucosal glands of smokers covering about 8% of mucosal areas compared to <1% in nonsmoking individuals, confirming results of previous studies. We further identified a subpopulation of nonsmokers with slightly elevated glandular MUC5AC levels suggesting moderate exposure to second-hand smoke or fine particulate air pollution. Overall, this study demonstrates a novel, user-friendly and freely available tool for digital pathology and the analysis of therapeutic interventions tested in ALI cell cultures.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jemt.23879DOI Listing

Publication Analysis

Top Keywords

airway mucus
8
mucosal proteins
8
muc5ac muc5b
8
ali cell
8
cell cultures
8
quantification increased
4
muc5ac
4
increased muc5ac
4
muc5ac expression
4
expression airway
4

Similar Publications

Towards real life exposure: nasal epithelial cell stimulation with pollen particle aerosols.

Environ Res

September 2025

Institute of Environmental Medicine and Integrative Health, Faculty of Medicine, University Hospital Augsburg, Augsburg, Germany; Institute of Environmental Medicine, Helmholtz Munich, Neuherberg, Germany. Electronic address:

Background: Currently, most researchers apply pollen extracts or -suspensions to assess the effects of pollen exposure on airway epithelia. How respiratory epithelia respond to pollen aerosols is not well studied because standardised methods to aerosolize pollen were not available until recently.

Aim Of Study: To develop and test a near-natural exposure model for pollen grains based on differentiated human nasal epithelial cells and a novel particle aerosoliser.

View Article and Find Full Text PDF

The role of individual characteristics of human subjects on the radiation burden of the bronchial airways from radon progeny.

Radiat Environ Biophys

September 2025

Environmental Physics Department, Institute for Energy Security and Environmental Safety, HUN-REN Centre for Energy Research, Budapest, Hungary.

Variability in radiation-related health risk and genetic susceptibility to radiation effects within a population is a key issue for radiation protection. Besides differences in the health and biological effects of the same radiation dose, individual variability may also affect dose distribution and its consequences for the same exposure. As exposure to radon progeny affects a large population and has a well-established dose-effect relationship, investigating individual variability upon radon exposure may be particularly important.

View Article and Find Full Text PDF

Allergic asthma is an inflammatory airway disease influenced by genetic and environmental factors and orchestrated by imbalance between T helper 1 cell (Th1) and two immune responses. Inflammation contributes to pathological changes and remodeling in tissues such as the vascular, lung, heart, and beds. The purpose for this study was to evaluate the effects of allergic asthma on heart pathology and remodeling.

View Article and Find Full Text PDF

Rationale: Tracheomalacia, typically seen in relapsing polychondritis,[1] is rarely reported in association with congenital heart disease (CHD). In patients with pulmonary hypoperfusion-type CHD, surgical repair results in a rapid increase in pulmonary blood flow, predisposing them to mucus retention, airway obstruction, and respiratory distress. We describe acute airway collapse in a patient with double outlet right ventricle and congenital bronchial stenosis following cardiac repair.

View Article and Find Full Text PDF

The increased presence of goblet epithelial cells in conducting airways of the respiratory system is common in pulmonary disorders and is often accompanied by disrupted immune and alveolar responses. Signaling effectors that restrict goblet cell production include YAP and TAZ, transcriptional regulators of Hippo signaling, which repress goblet cell differentiation in the airway epithelium. Here, we investigated the acute responses to goblet cell metaplasia that are induced by the conditional loss of YAP/TAZ in club epithelial cells of adult mouse lungs.

View Article and Find Full Text PDF