Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Symbiodiniaceae algae are often photosymbionts of reef-building corals. The establishment of their symbiosis resembles a microbial infection where eukaryotic pattern recognition receptors (e.g. lectins) are thought to recognize a specific range of taxon-specific microbial-associated molecular patterns (e.g. glycans). The present study used the sea anemone, Exaiptasia diaphana and three species of Symbiodiniaceae (the homologous Breviolum minutum, the heterologous-compatible Cladocopium goreaui and the heterologous-incompatible Fugacium kawagutii) to compare the surface glycomes of three symbionts and explore the role of glycan-lectin interactions in host-symbiont recognition and establishment of symbiosis. We identified the nucleotide sugars of the algal cells, then examined glycans on the cell wall of the three symbiont species with monosaccharide analysis, lectin array technology and fluorescence microscopy of the algal cell decorated with fluorescently tagged lectins. Armed with this inventory of possible glycan moieties, we then assayed the ability of the three Symbiodiniaceae to colonize aposymbiotic E. diaphana after modifying the surface of one of the two partners. The Symbiodiniaceae cell-surface glycome varies among algal species. Trypsin treatment of the alga changed the rate of B. minutum and C. goreaui uptake, suggesting that a protein-based moiety is an essential part of compatible symbiont recognition. Our data strongly support the importance of D-galactose (in particular β-D-galactose) residues in the establishment of the cnidarian-dinoflagellate symbiosis, and we propose a potential involvement of L-fucose, D-xylose and D-galacturonic acid in the early steps of this mutualism.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8290866PMC
http://dx.doi.org/10.1038/s41396-021-01059-wDOI Listing

Publication Analysis

Top Keywords

establishment cnidarian-dinoflagellate
8
cnidarian-dinoflagellate symbiosis
8
establishment symbiosis
8
cell surface
4
surface carbohydrates
4
carbohydrates symbiotic
4
symbiotic dinoflagellates
4
dinoflagellates role
4
establishment
4
role establishment
4

Similar Publications

Cellular mechanisms responsible for the regulation of nutrient exchange, immune responses, and symbiont population growth in the cnidarian-dinoflagellate symbiosis are poorly resolved, particularly with respect to the dinoflagellate symbiont. Here, we characterized proteomic changes in the native symbiont Breviolum minutum during colonization of its host sea anemone Exaiptasia diaphana ("Aiptasia"). We also compared the proteome of this native symbiont in the established symbiotic state with that of a non-native symbiont, Durusdinium trenchii.

View Article and Find Full Text PDF

Coral growth depends on the partnership between the animal hosts and their intracellular, photosynthetic dinoflagellate symbionts. In this study, we used the sea anemone , a laboratory model for coral biology, to investigate the poorly understood mechanisms that mediate symbiosis establishment and maintenance. We found that initial colonization of both adult polyps and larvae by a compatible algal strain was more effective when the algae were able to photosynthesize and that the long-term maintenance of the symbiosis also depended on photosynthesis.

View Article and Find Full Text PDF

Host nutrient sensing is mediated by mTOR signaling in cnidarian-dinoflagellate symbiosis.

Curr Biol

September 2023

Centre for Organismal Studies, Heidelberg University, Im Neuenheimer Feld 230, Heidelberg 69120 Germany. Electronic address:

To survive in the nutrient-poor waters of the tropics, reef-building corals rely on intracellular, photosynthetic dinoflagellate symbionts. Photosynthates produced by the symbiont are translocated to the host, and this enables corals to form the structural foundation of the most biodiverse of all marine ecosystems. Although the regulation of nutrient exchange between partners is critical for ecosystem stability and health, the mechanisms governing how nutrients are sensed, transferred, and integrated into host cell processes are largely unknown.

View Article and Find Full Text PDF

The mutualistic cnidarian-dinoflagellate symbiosis underpins the evolutionary success of stony corals and the persistence of coral reefs. However, a molecular understanding of the signalling events that lead to the successful establishment and maintenance of this symbiosis remains unresolved. For example, the phosphatidylinositol (PI) signalling pathway has been implicated during the establishment of multiple mutualistic and parasitic interactions across the kingdoms of life, yet its role within the cnidarian-dinoflagellate symbiosis remains unexplored.

View Article and Find Full Text PDF

The establishment and maintenance of the symbiosis between a cnidarian host and its dinoflagellate symbionts is central to the success of coral reefs. To explore the metabolite production underlying this symbiosis, we focused on a group of low molecular weight secondary metabolites, biogenic volatile organic compounds (BVOCs). BVOCs are released from an organism or environment, and can be collected in the gas phase, allowing non-invasive analysis of an organism's metabolism (i.

View Article and Find Full Text PDF