98%
921
2 minutes
20
Bacterial phytochrome photoreceptors usually belong to two-component signaling systems which transmit environmental stimuli to a response regulator through a histidine kinase domain. Phytochromes switch between red light-absorbing and far-red light-absorbing states. Despite exhibiting extensive structural responses during this transition, the model bacteriophytochrome from Deinococcus radiodurans (DrBphP) lacks detectable kinase activity. Here, we resolve this long-standing conundrum by comparatively analyzing the interactions and output activities of DrBphP and a bacteriophytochrome from Agrobacterium fabrum (Agp1). Whereas Agp1 acts as a conventional histidine kinase, we identify DrBphP as a light-sensitive phosphatase. While Agp1 binds its cognate response regulator only transiently, DrBphP does so strongly, which is rationalized at the structural level. Our data pinpoint two key residues affecting the balance between kinase and phosphatase activities, which immediately bears on photoreception and two-component signaling. The opposing output activities in two highly similar bacteriophytochromes suggest the use of light-controllable histidine kinases and phosphatases for optogenetics.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8292422 | PMC |
http://dx.doi.org/10.1038/s41467-021-24676-7 | DOI Listing |
Trends Biotechnol
September 2025
Bioprocess Engineering Group, Wageningen University & Research, Wageningen, 6700 AA, The Netherlands. Electronic address:
Microbial whole-cell biosensors (MWCBs) harness living cells to detect analytes and produce measurable outputs, enabling continuous, low-cost, and in situ sensing. Central to MWCB function are modular sensing architectures, which can be reprogrammed to respond to diverse signals. Particularly, two-component systems (TCSs) and allosteric transcription factors (aTFs) offer modular, engineerable frameworks for building chimeric proteins.
View Article and Find Full Text PDFNucleic Acids Res
August 2025
Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, India.
Bacterial pathogens such as Mycobacterium tuberculosis majorly rely on two-component signaling (TCS) systems to sense and generate adaptive responses to the dynamic and stressful host environment. TCS comprises a sensor histidine kinase (SHK) that perceives the environmental signal and a response regulator (RR) that modulates the target gene expression. TCS occurs via a phosphotransfer event from SHK to RR.
View Article and Find Full Text PDFBBA Adv
July 2025
Departamento de Física, Universidad Tecnica Federico Santa María, Av. España 1680, Valparaiso, 2390123, Chile.
Electrospinning is a technique that produces large quantities of nanofibers, that can be designed at the molecular level. Electrospun membranes can be designed to biomimic the chemical composition and morphological structure of the extracellular matrix. Here, we blend salmon gelatin with polyvinyl alcohol and chitosan, which are electrospun in a coaxial configuration with polyvinylidene fluoride, a piezoelectric polymer.
View Article and Find Full Text PDFMicrobiology (Reading)
September 2025
School of Cellular and Molecular Medicine, University of Bristol, Bristol, UK.
has evolved a complex regulatory network to coordinate expression of virulence factors, including cytolytic toxins, with host environmental signals. Central to this network are two-component systems (TCSs), in which a histidine kinase senses an external signal and activates a response regulator via phosphorylation, leading to changes in gene expression. Using a comprehensive screen of transposon mutants in each of the non-essential histidine kinase and response regulator genes in , we demonstrate that 11 of these 16 systems regulate cytotoxicity.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
August 2025
Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India.. Electronic address:
Photosynthetic organisms often rely on two-component regulatory system to adapt to environmental changes. This system is crucial for connecting external signals with the response mechanism by controlling gene expression, eventually allowing the organism to acclimatize to various stresses. Cyanobacteria, in particular, possess a large number of these two-component systems.
View Article and Find Full Text PDF