A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

Is prediction nothing more than multi-scale pattern completion of the future? | LitMetric

Is prediction nothing more than multi-scale pattern completion of the future?

Brain Res

Department of Cognitive and Information Sciences, University of California, Merced, United States. Electronic address:

Published: October 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

While the notion of the brain as a prediction machine has been extremely influential and productive in cognitive science, there are competing accounts of how best to model and understand the predictive capabilities of brains. One prominent framework is of a "Bayesian brain" that explicitly generates predictions and uses resultant errors to guide adaptation. We suggest that the prediction-generation component of this framework may involve little more than a pattern completion process. We first describe pattern completion in the domain of visual perception, highlighting its temporal extension, and show how this can entail a form of prediction in time. Next, we describe the forward momentum of entrained dynamical systems as a model for the emergence of predictive processing in non-predictive systems. Then, we apply this reasoning to the domain of language, where explicitly predictive models are perhaps most popular. Here, we demonstrate how a connectionist model, TRACE, exhibits hallmarks of predictive processing without any representations of predictions or errors. Finally, we present a novel neural network model, inspired by reservoir computing models, that is entirely unsupervised and memoryless, but nonetheless exhibits prediction-like behavior in its pursuit of homeostasis. These explorations demonstrate that brain-like systems can get prediction "for free," without the need to posit formal logical representations with Bayesian probabilities or an inference machine that holds them in working memory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.brainres.2021.147578DOI Listing

Publication Analysis

Top Keywords

pattern completion
12
predictive processing
8
prediction
4
prediction multi-scale
4
multi-scale pattern
4
completion future?
4
future? notion
4
notion brain
4
brain prediction
4
prediction machine
4

Similar Publications