98%
921
2 minutes
20
Ecological theory predicts that host-plant traits affect herbivore population growth rates, which in turn modulates predator-prey interactions. However, while vector-borne plant pathogens often alter traits of both host plants and vectors, a few studies have assessed how pathogens may act as interaction modifiers within tri-trophic food webs. By applying a food web motif framework, we assessed how a vector-borne plant pathogen (Pea-enation mosaic virus, PEMV) modified both bottom-up (plant-herbivore) and top-down (predator-prey) interactions. Specifically, we assessed trophic interactions with PEMV-infectious Acyrthosiphon pisum (pea aphid) vectors compared to non-infectious aphids in a factorial experiment that manipulated predator and plant communities. We show that PEMV altered bi-trophic relationships, whereby on certain plant species, PEMV reduced vector performance but also increased their susceptibility to predators. However, on other plant species, PEMV weakened top-down control or increased vector performance. Our results suggest that vector-borne plant pathogens are important interaction modifiers for plant-herbivore-predator dynamics: host-plant response to viruses can decrease herbivore abundance by reducing herbivore performance, but also increase herbivore abundance by weakening top-down control. Broadly speaking, trophic interactions that regulate herbivore outbreaks appear to be modified for herbivores actively transmitting viruses to host plants. Consequently, management and monitoring of outbreaking herbivores should consider the infection status of focal populations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00442-021-04987-8 | DOI Listing |
Acta Trop
September 2025
Department of Biology, College of Natural Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea; School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, 41566, Republic of Korea; G-LAMP Project Group, Kyungpook National University,
Culicoides spp. (Diptera: Ceratopogonidae) are vectors of livestock diseases, including bluetongue, Akabane, and African horse sickness. Accurate species identification is a crucial first step in effective vector management.
View Article and Find Full Text PDFExp Parasitol
September 2025
Natural Products Drug Discovery Research Group, Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK. Electronic address:
Leishmaniasis is a vector-borne parasitic disease caused by Leishmania spp., for which there is no vaccine and an urgent need for better drugs. The zinc metalloprotease gp63 of Leishmania has been identified as an antigenic structure for vaccine design and a promising target for new antileishmanial agents.
View Article and Find Full Text PDFNeotrop Entomol
September 2025
Department of Zoology, College of Science, King Saud University, PO Box 2455, 11451, Riyadh, Saudi Arabia.
This study evaluated the larvicidal efficacy of the methanol extract of Dactyloctenium aegyptium against Aedes aegypti (L, 1762) (Diptera: Culicidae), Anopheles stephensi Liston, 1901 (Diptera: Culicidae), and Culex quinquefasciatus Say, 1823 (Diptera: Culicidae). The methanol extract exhibited the highest mortality rates, achieving 100% mortality at 250 µg/mL for all species tested, and demonstrated the lowest LC values of 94.28 µg/mL for Ae.
View Article and Find Full Text PDFBiology (Basel)
July 2025
State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, Key Laboratory of Biopesticides and Chemical Biology, MOE, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Recent advances in microbiome studies have deepened our understanding of endosymbionts and gut-associated microbiota in host biology. Of those, lepidopteran systems in particular harbor a complex and diverse microbiome with various microbial taxa that are stable and transmitted between larval and adult stages, and others that are transient and context-dependent. We highlight key microorganisms-including , , , , , , , , , and -that play critical roles in microbial ecology, biotechnology, and microbiome studies.
View Article and Find Full Text PDFJ Wildl Dis
September 2025
Biomedical and Diagnostic Sciences, University of Tennessee, 2407 River Drive, Room A233, Knoxville, Tennessee 37996, USA.
Coyotes (Canis latrans) can serve as hosts for many pathogens of concern and may be useful for monitoring the prevalence and emergence of these pathogens. We collected serum and/or whole blood antemortem from 43 coyotes from South Carolina, US, and collected samples from opportunistically collected carcasses from 71 Tennessee, US and 15 South Carolina, US coyotes. We tested samples with SNAP 4Dx PLUS rapid ELISA tests for Ehrlichia spp.
View Article and Find Full Text PDF