98%
921
2 minutes
20
Global patterns of plant biomass drive the distribution of much of the marine and terrestrial life on Earth. This is because their biomass and physical structure have important consequences for the communities they support by providing food and habitat. In terrestrial ecosystems, temperature is one of the major determinants of plant biomass and can influence plant and leaf morphology. In temperate marine systems, macroalgae are major habitat-formers and commonly display highly variable morphology in response to local environmental conditions. Variation in their morphology, and thus habitat structure on temperate reefs, however, is poorly understood across large scales. In this study, we used a trait-based approach to quantify morphological variability in subtidal rocky reefs dominated by the algal genus along a latitudinal gradient, in southeastern Australia (~900 km). We tested whether large-scale variation in sea surface temperature (SST), site exposure, and nutrient availability can predict algal biomass and individual morphology. We found biomass declined with increasing maximum SST. We also found that individual morphology varied with abiotic ocean variables. Frond size and intraindividual variability in frond size decreased with increasing with distance from the equator, as SST decreased and nitrate concentration increased. The shape of fronds displayed no clear relationship with any of the abiotic variables measured. These results suggest climate change will cause significant changes to the structure of habitats along the southeastern coast of Australia, resulting in an overall reduction in biomass and increase in the prevalence of thalli with large, highly variable fronds. Using a space-for-time approach means shifts in morphological trait values can be used as early warning signs of impending species declines and regime shifts. Consequently, by studying traits and how they change across large scales we can potentially predict and anticipate the impacts of environmental change on these communities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8258212 | PMC |
http://dx.doi.org/10.1002/ece3.7714 | DOI Listing |
Proc Biol Sci
September 2025
Laboratorio de Paleobiología, Centro de Estudios Avanzados en Zonas Áridas, La Serena, Chile.
Biotic interactions-and predation in particular-are thought to follow a latitudinal gradient, increasing towards the tropics; yet empirical evidence remains contradictory and largely based on studies from the Northern Hemisphere. Moreover, the role of environmental variables shaping latitudinal gradients of predation intensity has seldom been tested. Here, we quantify predation by shell-breaking crabs on modern shells of the marine gastropod along a latitudinal gradient (40°-54° S) on the southwestern Atlantic coast.
View Article and Find Full Text PDFMar Life Sci Technol
August 2025
Laboratory of Marine Organism Taxonomy and Phylogeny, Qingdao Key Laboratory of Marine Biodiversity and Conservation, and The Key Laboratory of Experimental Marine Biology, Centre for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266000 China.
Unlabelled: The distribution of (Euphrasen, 1788) spans a pronounced latitudinal-environmental gradient from the subtropical to the subpolar zones. The species is reported to have multiple stocks along coastal China, exhibiting different spawning behaviors and habitat preferences. Such ecological variations might imply potential genetic divergence and local adaptation.
View Article and Find Full Text PDFSci Total Environ
September 2025
Laboratory of Plant Molecular Physiology, Centre of Biotechnology of Borj-Cedria, PB.901, 2050, Hammam-Lif, Tunisia. Electronic address:
Climate change is challenging agriculture and food security due to the limited adaptability of domesticated crops. While plant range shifts along latitudinal and altitudinal gradients are well-documented, their impacts on belowground microbial communities and plant adaptability remain poorly understood. Vitis vinifera subsp.
View Article and Find Full Text PDFEcology
September 2025
School of Agriculture Biomedicine and Environment, La Trobe University, Bundoora, Victoria, Australia.
Climate change threatens biodiversity and ecosystem services around the globe. Despite the importance of native bees as pollinators, there is evidence of global declines, and we know very little about how climate shapes their distributions now and into the future. In the current study, we combined large-scale seasonal field sampling and experimental acclimation to examine whether populations of an Australian bee, Exoneura robusta, vary in their capacity to adapt to different climates.
View Article and Find Full Text PDFProc Biol Sci
September 2025
School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
Latitudinal clines are routinely used as evidence of adaptation across broad climatic gradients. However, if environmental variation influences the strength of latitudinal clines, then clinal patterns will be unstable, and using patterns of adaptation to predict population responses to global change will be difficult. To test whether environmental variation influences latitudinal clines, we sampled five populations of spanning 3000 km of east coast Australia, and measured stress tolerance (heat, cold and desiccation) and body size on flies that developed in six combinations of temperature (13°C, 25°C and 29°C) and diet (standard and low-calorie) treatments.
View Article and Find Full Text PDF