Preparation, characterization and agri applications of biochar produced by pyrolysis of sewage sludge at different temperatures.

Sci Total Environ

Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow 226 001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India. Electronic address:

Published: November 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Sewage sludge (SS) is an abundantly available feedstock, which is generally considered as potential threat to human health and environment. Its utilization in any process would be of great help for environmental sustainability. Accordingly, this work aimed to prepare and characterize the sewage sludge biochar (SSB) at temperatures, i.e. (500, 450, 400, and 350 °C), and further analyze the available nutrients and contaminants as well as agri application potential. The results indicated that the total nitrogen (TN), electrical conductivity (EC), and total organic carbon (TOC) content in SSBs decreased with increasing pyrolysis temperature. The overall concentration of polycyclic aromatic hydrocarbons (PAHs) in SSBs was substantially lower (1.8-9.7-fold depending on pyrolysis temperature) than in SS. Pyrolysis of SS enriched the heavy metals content in SSBs and the relative enrichment factor (RE) factor varied between 1.1 and 2.1 depending on the pyrolysis temperature. Furthermore, compared to SS, the leaching rate of heavy metals was significantly decreased in SSBs (1.1-100-fold depending on the pyrolysis temperature) and the pyrolysis temperature of 400-450 °C prevented the Ni, Pb, Cr, and Zn leaching in SSB. The total PAH and heavy metals content in biochars were below the control standard for land application. Finally, testing of the growth-promoting effect of biochar extracts on fenugreek plants revealed that SSB prepared at 350 °C significantly stimulated the root and shoot length of 5-days old seedlings. This study provides important data for potential environmental risks of SSB applications.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2021.148722DOI Listing

Publication Analysis

Top Keywords

pyrolysis temperature
20
sewage sludge
12
depending pyrolysis
12
heavy metals
12
350 °c
8
content ssbs
8
temperature pyrolysis
8
metals content
8
pyrolysis
7
temperature
5

Similar Publications

A free radical polymerization approach was applied to synthesize different carboxymethyl cellulose-grafted poly(acrylamide) hydrogels (Hyd) composited with biochar, magnetic biochar, and magnetic biochar decorated with ZIF-67 to decontaminate methylene blue (MB) from water media. Biochar was obtained from walnut shells (WS) by a pyrolysis method, and magnetic biochar (WS/CoFeO) and biochar-decorated ZIF-67 (WS/CoFeO/ZIF-67) were prepared by chemical co-precipitation and hydrothermal methods, respectively. An increase in the amount of these particles by up to 10 wt% enhanced the removal performance.

View Article and Find Full Text PDF

The pyrolysis of flue-cured tobacco stalks (TS) faces challenges such as low bio-oil value and utilization efficiency. Existing studies have overlooked the anatomical heterogeneity of tobacco stalks, thereby limiting the directional regulation of high-value components, such as nicotine and phenolic compounds. This study divides TS into the husk (TSH), xylem (TSX), and pith (TSP), and investigates their physicochemical properties, pyrolysis behavior (through TGA and fixed-bed pyrolysis experiments), and interactions.

View Article and Find Full Text PDF

Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).

View Article and Find Full Text PDF

Biomass-based polymers such as poly(lactic acid) (PLA) have attracted much attention, because they are renewable, biocompatible, and nontoxic to the environment and have been used in various fields such as biomedical, agricultural, and food packaging industries. However, one of the common drawbacks of PLA-based materials is their low glass transition temperature in the amorphous state, while adding phenylphosphonic acid zinc salt (PPA-Zn) as a nucleating agent was found to be a promising method to improve the physical property of PLA. On the other hand, degradation of PLA-based materials in the environment may cause the pollution from the metal of a nucleating agent in PLA and quantification of nucleating agents in polymers is of interest.

View Article and Find Full Text PDF

Activation of peroxymonosulfate by Fenton-conditioned sludge-derived biochar for efficient degradation and detoxification of sulfamethoxazole: Reactive oxygen species dominated process.

Environ Res

September 2025

School of Environmental Science and Engineering, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan, Hubei, 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei, 430074, China. Electronic address: ho

The activation of peroxymonosulfate (PMS) by biochar has shown promising potential for the efficient degradation and detoxification of antibiotics in wastewater. However, the underlying mechanisms are not fully understood. In this study, Fenton-conditioned sludge-derived biochar (FSBC) was prepared by microwave pyrolysis to activate PMS for the efficient degradation and detoxification of sulfamethoxazole (SMX).

View Article and Find Full Text PDF