[Hungarian Genomic Data Warehouse supporting the healthy ageing research].

Orv Hetil

1 Semmelweis Egyetem, Általános Orvostudományi Kar, Genomikai Medicina és Ritka Betegségek Intézete, Budapest, Üllői út 26., 1085.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Összefoglaló. A fejlett társadalmak egészségügyi rendszereinek legnagyobb kihívását az öregedéssel összefüggő, korfüggő betegségek jelentik. Annak megértéséhez, hogy az egyes genetikai variánsoknak mi a szerepük egy korfüggő betegség kialakulásában, meg kell ismerkednünk magával az öregedési folyamattal, az egészséges hosszú élettel asszociált, valamint az adott populációra jellegzetes variánsokkal is. A Semmelweis Egyetem Genomikai Medicina és Ritka Betegségek Intézete a Nemzeti Bionika Program keretén belül a Magyar Genomikai Egészségtárház felállítását tűzte ki célul, időskoruk mellett is egészséges önkéntesek teljesgenom-szekvenciáinak és kapcsolódó fenotípusadatainak katalogizálásával és elemzésével, létrehozva az első magyar teljes genomi referencia-adatbázist. Fontos szempont volt, hogy a kutatás az egészséges öregedést vizsgáló nemzetközi projektekhez is kapcsolódást biztosítson, így lehetőséget teremtve a különböző országokból származó adatok harmonizálására és közös elemzésére. A kutatás résztvevőinek 49%-a 70-80 éves, 36%-a 81-90 éves, 14%-uk pedig 90 év feletti; a nemek aránya 44/56%-os megoszlást mutatott a férfiak és a nők között. A résztvevők csaknem fele (46%) egyedül él. Magas a felsőfokú végzettségűek aránya (46%), a résztvevők 61%-a hosszú időn át sportolt, 70%-uk sosem dohányzott. A vizsgálati alanyok szülei is magas életkort éltek meg, az édesapáknál 74,3, az édesanyák esetében pedig 80,47 év volt a halálozáskori átlagéletkor. Adattárházunk elsőként tervez hozzáférést biztosítani egy magyar teljes genomi referencia-adatbázishoz, amely a genetikusan meghatározott betegségek és fenotípusok kutatásában és a klinikai gyakorlatban is alapvető fontosságú. A projekt bioinformatikai fejlesztései a genetikai/genomikai információk többszintű elérését támogatják a személyes adatok védettségét megőrző statisztikai elemzési és mesterségesintelligencia-eljárások segítségével. Orv Hetil. 2021; 162(27): 1079-1088. Summary. Genetics has proven to be a a successful approach in the study of ageing. To understand the role of each genetic variant in the development of an age-dependent disease, we need to become familiar with the ageing process itself and with the population-specific variants. The Institute of Genomic Medicine and Rare Disorders of the Semmelweis University within the framework of the National Bionics Program set up a data collection, the Hungarian Genomic Data Warehouse, by cataloging and analyzing complete genome sequences and related phenotype data of healthy volunteers, which also serves as a reference national Hungarian genomic database. The structure of the data warehouse allows interoperability with the most important international research projects on ageing. 49% of the participants in the Hungarian Genomic Data Warehouse were 70-80 years old, 36% were 81-90, 14% over 90 years old. The gender ratio was 44/56% between men and women. The proportion of people with higher education is high (46%), 61% of the participants played sports for a long time, and 70% never smoked. The parents of the participants also lived a high age, with an average age at death of 74.3 years for fathers and 80.47 years for mothers. The Hungarian Genomic Data Warehouse can provide vital and timely support in personalized medicine, especially in the research and diagnosis of genetically inherited disorders. The long-term goal of these bioinformatic developments is to provide access at multiple levels to the genomic data using privacy-preserving data analysis methods in genomics. Orv Hetil. 2021; 162(27): 1079-1088.

Download full-text PDF

Source
http://dx.doi.org/10.1556/650.2021.32131DOI Listing

Publication Analysis

Top Keywords

genomic data
20
data warehouse
20
hungarian genomic
16
data
9
és
8
magyar teljes
8
teljes genomi
8
orv hetil
8
hetil 2021
8
2021 16227
8

Similar Publications

Here, using whole-exome sequencing of a cohort of 17 Japanese patients with 46,XY disorders or differences of sex development, we identified two pathogenic DEAH-box helicase 37 (DHX37) variants in three patients. We also identified a patient with a likely pathogenic variant in SOX9 and a rare likely benign variant in DHX37. This Data Report highlights the genetic and phenotypic diversity of DXH37 variants.

View Article and Find Full Text PDF

Background: The potential impacts of polygenic scores (PGS) on health-behavior changes are not fully understood. The Iwate PGS Assessment and Risk Communication Study aims to investigate the effects of reporting PGS-based risk for ischemic stroke on health behaviors.

Methods: Participants wishing to know their PGS-based ischemic stroke risk were recruited from health checkup venues for workers in Iwate Prefecture in 2023.

View Article and Find Full Text PDF

In silico search reveals the association of lichens with black yeast-like fungi in the order Chaetothyriales.

Fungal Biol

October 2025

Engineering Bioprocess and Biotechnology Post-Graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Parana, Curitiba, Paraná, Brazil. Electronic address:

Lichens exemplify a unique symbiotic relationship between fungi and algae or cyanobacteria, where fungi (mycobionts) provide structural support, while algae or cyanobacteria (photobionts) provide nutrients. Recent discoveries in the order Chaetothyriales have led to the description of several lichenicolous species, underscoring an intricate relationship of some black yeast-like fungi with lichens. The present study aims to investigate public metagenomic data of lichens available in the SRA database, covering a total of 2888 samples.

View Article and Find Full Text PDF

ESCMID workshop: Artificial Intelligence and Machine Learning in Medical Microbiology Diagnostics.

Microbes Infect

September 2025

Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland; ESCMID study group on Molecular Diagnostics and Genomics. Electronic address:

Rapid advancements in artificial intelligence (AI) and machine learning (ML) offer significant potential to transform medical microbiology diagnostics, improving pathogen identification, antimicrobial susceptibility prediction and outbreak detection. To address these opportunities and challenges, the ESCMID workshop, "Artificial Intelligence and Machine Learning in Medical Microbiology Diagnostics", was held in Zurich, Switzerland, from June 2-5, 2025. The course featured expert lectures, practical sessions and panel discussions covering foundational ML concepts and deep learning architectures, data interoperability, quality control processes, model development and validation strategies.

View Article and Find Full Text PDF

Genomic epidemiology of clade Ia monkeypox viruses circulating in the Central African Republic in 2022-24: a retrospective cross-sectional study.

Lancet Microbe

September 2025

Institut Pasteur de Bangui, Bangui, Central African Republic; Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon. Electronic address:

Background: The spread of monkeypox virus (Orthopoxvirus monkeypox) clade Ib from the Democratic Republic of the Congo to neighbouring countries has raised global concerns, leading to WHO declaring mpox a public health emergency on Aug 14, 2024. We applied genomic epidemiology to investigate the causes of recurrent mpox outbreaks in the Central African Republic. We aimed to determine whether frequent zoonotic spillovers or increased human-to-human transmissions are driving mpox epidemiology.

View Article and Find Full Text PDF