98%
921
2 minutes
20
Mining and processing metalliferous ores can degrade the environment well beyond the footprint of the mine, particularly where on-site containment and post-mining remediation has been insufficient to prevent releases of solid and aqueous mine wastes. In this study, we investigated the potential of sediment and water chemistry coupled with environmental (e)DNA metabarcoding to evaluate discrete and cumulative ecological impacts of two legacy base metal (copper (Cu), zinc (Zn), lead (Pb)) mines (Peelwood and Cordillera) which discharge metals via ephemeral tributaries into perennial Peelwood Creek. Although the two mine streams exceeded Australian guidelines for sediment and freshwater quality for Cu, Zn and Pb, Peelwood Creek had relatively low sediment and water metal concentrations, suggesting a low potential for environmental toxicity. Although sediment and water chemistry defined the extent of biological impacts, metabarcoding showed that Peelwood and Cordillera mines had discrete impacts and Peelwood mine was the main source of contamination of Peelwood Creek. Metabarcoding showed that prokaryotes can be good indicators of metal contamination whereas eukaryotes did not reflect contamination impacts in Peelwood Creek. Metabarcoding results showed that benthic communities downstream of Cordillera mine were less impacted than those below Peelwood mine, suggesting that Peelwood mine should be considered for further remediation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2021.126483 | DOI Listing |
J Hazard Mater
October 2021
Department of Biological Sciencs, Macquarie University, Sydney 2109, Australia.
Mining and processing metalliferous ores can degrade the environment well beyond the footprint of the mine, particularly where on-site containment and post-mining remediation has been insufficient to prevent releases of solid and aqueous mine wastes. In this study, we investigated the potential of sediment and water chemistry coupled with environmental (e)DNA metabarcoding to evaluate discrete and cumulative ecological impacts of two legacy base metal (copper (Cu), zinc (Zn), lead (Pb)) mines (Peelwood and Cordillera) which discharge metals via ephemeral tributaries into perennial Peelwood Creek. Although the two mine streams exceeded Australian guidelines for sediment and freshwater quality for Cu, Zn and Pb, Peelwood Creek had relatively low sediment and water metal concentrations, suggesting a low potential for environmental toxicity.
View Article and Find Full Text PDF