Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Acephalic spermatozoa syndrome is a rare type of teratozoospermia that severely impairs the reproductive ability of male patients, and genetic defects have been recognized as the main cause of acephalic spermatozoa syndrome. Spermatogenesis and centriole-associated 1 like (SPATC1L) is indispensable for maintaining the integrity of sperm head-to-tail connections in mice, but its roles in human sperm and early embryonic development remain largely unknown. Herein, we conducted whole-exome sequencing (WES) of 22 infertile men with acephalic spermatozoa syndrome. An in silico analysis of the candidate variants was conducted, and WES data analysis was performed using another cohort consisting of 34 patients with acephalic spermatozoa syndrome and 25 control subjects with proven fertility. We identified biallelic mutations in SPATC1L (c.910C>T:p.Arg304Cys and c.994G>T:p.Glu332X) from a patient whose sperm displayed complete acephalia. Both SPATC1L variants are rare and deleterious. SPATC1L is mainly expressed at the head-tail junction of elongating spermatids. Plasmids containing pathogenic variants decreased the level of SPATC1L in vitro. Moreover, none of the patient's four attempts at intracytoplasmic sperm injection (ICSI) resulted in a transplantable embryo, which suggests that SPATC1L defects might affect early embryonic development. In conclusion, this study provides the first identification of SPATC1L as a novel gene for human acephalic spermatozoa syndrome. Furthermore, WES might be applied for patients with acephalic spermatozoa syndrome who exhibit reiterative ICSI failures.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8788604PMC
http://dx.doi.org/10.4103/aja.aja_56_21DOI Listing

Publication Analysis

Top Keywords

acephalic spermatozoa
28
spermatozoa syndrome
28
biallelic mutations
8
spermatogenesis centriole-associated
8
early embryonic
8
embryonic development
8
patients acephalic
8
acephalic
7
spermatozoa
7
syndrome
7

Similar Publications

Background: The gene encodes a testis-specific protein required for sperm head-tail connection during spermiogenesis. The gene has an established role in the acephalic spermatozoa syndrome (ASS) defect recognised by headless tails, spermatozoa with disrupted head-tail junction and also a few tailless heads in semen.

Aim: This study aims to evaluate the genetic variants of all exons of the gene and the protein expression in 10 men with ASS.

View Article and Find Full Text PDF

Toxoplasma gondii is an obligate intracellular protozoan parasite that can infect virtually any nucleated cell within human and other endoderm animal tissue, including male reproductive organs. Herein, we investigate the capacity of T. gondii tachyzoites to infect and proliferate within the testes and epididymis and examine the resulting impact on human spermatozoa structure and functionality.

View Article and Find Full Text PDF

Defects in mRNA splicing and implications for infertility: a comprehensive review and in silico analysis.

Hum Reprod Update

May 2025

Department of Obstetrics and Gynecology, Reproductive Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.

Background: mRNA splicing is a fundamental process in the reproductive system, playing a pivotal role in reproductive development and endocrine function, and ensuring the proper execution of meiosis, mitosis, and gamete function. Trans-acting factors and cis-acting elements are key players in mRNA splicing whose dysfunction can potentially lead to male and female infertility. Although hundreds of trans-acting factors have been implicated in mRNA splicing, the mechanisms by which these factors influence reproductive processes are fully understood for only a subset.

View Article and Find Full Text PDF

Background: The presence of predominantly headless sperm in semen is a hallmark of acephalic spermatozoa syndrome, which is primarily caused by gene mutations in humans.

Purpose: To identify genetic causes for acephalic spermatozoa syndrome.

Methods: Polymerase chain reaction and Sanger sequencing were performed to define mutations in SUN5 and PMFBP1.

View Article and Find Full Text PDF

The structural integrity of the sperm is crucial for male fertility, defects in sperm head-tail linkage and flagellar axoneme are associated with acephalic spermatozoa syndrome (ASS) and the multiple morphological abnormalities of the sperm flagella (MMAF). Notably, impaired head-tail coupling apparatus (HTCA) often accompanies defects in the flagellum structure, however, the molecular mechanisms underlying this phenomenon remain elusive. Here, we identified an evolutionarily conserved coiled-coil domain-containing (CCDC) protein, CCDC113, and found the disruption of CCDC113 produced spermatozoa with disorganized sperm flagella and HTCA, which caused male infertility.

View Article and Find Full Text PDF