98%
921
2 minutes
20
The accurate measurement of nanoscale mechanical characteristics is crucial in the emerging field of soft condensed matter for industrial applications. An atomic force microscope (AFM) can be used to conduct nanoscale evaluation of the Young's modulus on the target surface based on site-specific force spectroscopy. However, there is still a lack of well-organized study about the nanomechanical interpretation model dependence along with cantilever stiffness and radius of the tip apex for the Young's modulus measurement on the soft materials. Here, we present the fast and accurate measurement of the Young's modulus of a sample's entire scan surface using the AFM in a newly developed PinPoint nanomechanical mode. This approach enables simultaneous measurements of topographical data and force-distance data at each pixel within the scan area, from which quantitative visualization of the pixel-by-pixel topographical height and Young's modulus of the entire scan surface was realized. We examined several models of contact mechanics and showed that cantilevers with proper mechanical characteristics such as stiffness and tip radius can be used with the PinPoint mode to accurately evaluate the Young's modulus depending on the sample type.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8234525 | PMC |
http://dx.doi.org/10.3390/nano11061593 | DOI Listing |
ACS Appl Mater Interfaces
September 2025
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China.
Li-metal batteries promise ultrahigh energy density, but their application is limited by Li-dendrite growth. Theoretically, fluorine-containing anions such as bis(fluorosulfonyl)imide (FSI) in electrolytes can be reduced to form LiF-rich solid-electrolyte interphases (SEIs) with high Young's modulus and ionic conductivity that can suppress dendrites. However, the anions migrate toward the cathode during the charging process, accompanied by a decrease in the concentration of interfacial anions near the anode surface.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
September 2025
School of Mechanical Engineering, Xinjiang University, Urumqi 830017, PR China; Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, PR China.
High-performance hydrogel biomaterials hold considerable promise for advanced wound care. However, the suboptimal mechanical properties of conventional hydrogel materials limit their practical application. In this study, Hyaluronic acid sodium salt (HA), xanthan gum (XG), and N-acryloyl-glycinamide (NAGA) hydrogels with porous structures were successfully fabricated using in-situ extrusion 3D printing technology, and a functionalization strategy involving tea polyphenol (TP) immersion was proposed to enhance material properties through additional hydrogen bonding.
View Article and Find Full Text PDFBiomater Adv
September 2025
Department of Plastic Surgery, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan, Hubei, 430060, PR China. Electronic address:
Hemostatic intervention at the bleeding site during early-phase wound management plays a crucial role in reducing trauma-induced complications and mortality, while advanced wound dressings facilitate hemorrhage control, exudate management, and antimicrobial protection to promote optimal healing outcomes. To address these issues, we developed a multifunctional collagen/silk fibroin/Mg(OH)₂ (Col/SF/Mg(OH)₂) composite sponge combining enhanced mechanical strength, rapid hemostasis, and broad-spectrum antibacterial activity. The incorporation of silk fibroin (SF) through covalent crosslinking increased the elastic modulus by 4.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Martin A. Fisher School of Physics, Brandeis University, Waltham, MA 02453.
Programmable self-assembly has recently enabled the creation of complex structures through precise control of the interparticle interactions and the particle geometries. Targeting ever more structurally complex, dynamic, and functional assemblies necessitates going beyond the design of the structure itself, to the measurement and control of the local flexibility of the intersubunit connections and its impact on the collective mechanics of the entire assembly. In this study, we demonstrate a method to infer the mechanical properties of multisubunit assemblies using cryogenic electron microscopy (cryo-EM) and RELION's multi-body refinement.
View Article and Find Full Text PDFLangmuir
September 2025
Process Engineering in Life Science Engineering, HTW Berlin, Wilhelminenhofstraße 75 A, 12459 Berlin, Germany.
Pickering emulsions (PEs), where water-in-oil (w/o) droplets are stabilized by nanoparticles (NPs), offer a promising platform for biocatalysis by providing a large interfacial area crucial for efficient substrate conversion. While several lipase catalyzed reactions in PEs have been demonstrated, the exact interfacial structure is unknown. This study focuses on the interfacial network formed by NPs and lipase (CRL) at the octanol/water-interface by varying pH and NP charge.
View Article and Find Full Text PDF