Computational Approaches to Explore Bacterial Toxin Entry into the Host Cell.

Toxins (Basel)

MEMPHYS/PhyLife, Department of Physics, Chemistry and Pharmacy (FKF), University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.

Published: June 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Many bacteria secrete toxic protein complexes that modify and disrupt essential processes in the infected cell that can lead to cell death. To conduct their action, these toxins often need to cross the cell membrane and reach a specific substrate inside the cell. The investigation of these protein complexes is essential not only for understanding their biological functions but also for the rational design of targeted drug delivery vehicles that must navigate across the cell membrane to deliver their therapeutic payload. Despite the immense advances in experimental techniques, the investigations of the toxin entry mechanism have remained challenging. Computer simulations are robust complementary tools that allow for the exploration of biological processes in exceptional detail. In this review, we first highlight the strength of computational methods, with a special focus on all-atom molecular dynamics, coarse-grained, and mesoscopic models, for exploring different stages of the toxin protein entry mechanism. We then summarize recent developments that are significantly advancing our understanding, notably of the glycolipid-lectin (GL-Lect) endocytosis of bacterial Shiga and cholera toxins. The methods discussed here are also applicable to the design of membrane-penetrating nanoparticles and the study of the phenomenon of protein phase separation at the surface of the membrane. Finally, we discuss other likely routes for future development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8309782PMC
http://dx.doi.org/10.3390/toxins13070449DOI Listing

Publication Analysis

Top Keywords

toxin entry
8
protein complexes
8
cell membrane
8
entry mechanism
8
cell
6
computational approaches
4
approaches explore
4
explore bacterial
4
bacterial toxin
4
entry host
4

Similar Publications

Gut mucin fucosylation dictates the entry of botulinum toxin complexes.

bioRxiv

August 2025

Department of Bacteriology, Graduate School of Medical Sciences, Kanazawa University, Ishikawa 920-8640, Japan.

Botulinum toxins (BoNTs) are the most potent known bacterial toxins. The BoNT complex from B-Okra (large progenitor toxin complex (L-PTC)/B, hyper-oral-toxic) exerts at least 80-fold higher oral toxicity in mice compared with that from serotype A1 (L-PTC/A, non-hyper-oral-toxic). Here, we showed that L-PTC/B was predominantly absorbed through enterocytes, whereas L-PTC/A targeted intestinal microfold cells.

View Article and Find Full Text PDF

Despite the clinical significance of many nonenveloped viruses, the molecular mechanisms of their internalization and membrane penetration are not well understood. Rotaviruses (RVs) are nonenveloped double-stranded RNA viruses and the leading cause of severe dehydrating diarrhea in infants and young children. We identified fatty acid 2-hydroxylase (encoded by ) in the fatty acid 2-hydroxylation pathway as a proviral gene that supports RV infection.

View Article and Find Full Text PDF

Background: CD4 T lymphocytes play a central role in the pathogenesis of periodontitis, with the Treg/Th17 (regulatory T cell/T helper 17 cell) imbalance closely linked to diabetes-associated periodontitis (DPD). Maxacalcitol (OCT), an analog of active vitamin D, has therapeutic effects on diseases involving Treg/Th17 imbalance. This study aimed to determine whether OCT improved DPD by restoring the Treg/Th17 imbalance via store-operated Ca entry (SOCE)-mediated mitochondrial dysfunction.

View Article and Find Full Text PDF

Pathogenic breaches: how viruses compromise blood-tissue barriers.

Tissue Barriers

August 2025

Molecular Biology Unit, Faculty of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.

Blood-tissue barriers (BTBs) are highly specialized, selectively permeable surfaces that separate the circulatory system from delicate tissues and organs. Critical examples include the blood-brain barrier (BBB), blood-retinal barrier (BRB), blood-testis barrier (BTB), and other organ-specific barriers, including the alveolar-capillary interface in the lungs and the glomerular filtration barrier in the kidneys. These barriers regulate the bidirectional transport of nutrients, gases, and waste while restricting pathogens, toxins, and immune cells to maintain physiological balance.

View Article and Find Full Text PDF

A Novel Anti-BoNT/A Neutralizing Antibody Possessed Overlapped Epitope with SV2 and Had Prolonged Half-Life In Vivo.

Toxins (Basel)

July 2025

State Key Laboratory of National Security Sepcially Needed Medicines, Beijing 100039, China.

The C-terminus of the BoNT/A heavy chain (BoNT/AHC) mediates binding to its receptor, SV2, a critical step for toxicity. Antibody inhibition of this interaction enhances neuronal survival. We previously identified a functional anti-BoNT/AHC nanobody, HM.

View Article and Find Full Text PDF