98%
921
2 minutes
20
Characterizing the segmental dynamics of proteins, and intrinsically disordered proteins in particular, is a challenge in biophysics. In this study, by combining data from broadband dielectric spectroscopy (BDS) and both depolarized (DDLS) and polarized (PDLS) dynamic light scattering, we were able to determine the dynamics of a small peptide [ε-poly(lysine)] in water solutions in two different conformations (pure β-sheet at pH = 10 and a more disordered conformation at pH = 7). We found that the segmental (α-) relaxation, as probed by DDLS, is faster in the disordered state than in the folded conformation. The water dynamics, as detected by BDS, is also faster in the disordered state. In addition, the combination of BDS and DDLS results allows us to confirm the molecular origin of water-related processes observed by BDS. Finally, we discuss the origin of two slow processes (A and B processes) detected by DDLS and PDLS in both conformations and usually observed in other types of water solutions. For fully homogeneous ε-PLL solutions at pH = 10, the A-DLS process is assigned to the diffusion of individual β-sheets. The combination of both techniques opens a route for understanding the dynamics of peptides and other biological solutions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d1cp01893k | DOI Listing |
J Phys Chem A
September 2025
Department of Chemistry, Institute for Quantum Information Research and Engineering, and Center for Molecular Quantum Transduction, Northwestern University, Evanston, Illinois 60208-3113, United States.
Light-driven formation of radical ion pairs that occurs much faster than their electron spin dynamics results in correlated spins whose coherence properties can be used as a quantum-based electric field sensor. This results from the radical ion pair having charge and spin distributions that track one another. Thus, electric field induced changes in the distance between the two charges are reflected in the spin-spin distance that can be measured directly using out-of-phase electron spin echo envelope modulation (OOP-ESEEM), a pulse-EPR technique.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Materials Science and Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China.
Solid-state electrolytes (SSEs) are being extensively researched as replacements for liquid electrolytes in future batteries. Despite significant advancements, there are still challenges in using SSEs, particularly in extreme conditions. This study presents a hydrated metal-organic ionic cocrystal (HMIC) solid-state ion conductor with a solvent-assisted ion transport mechanism suitable for extreme operating conditions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2025
Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin 10315, Germany.
Animals can improve their decision-making abilities by integrating information from multiple senses, which is especially beneficial when living in fluctuating environments. However, understanding how wild predators may use multimodal sensing when hunting prey in split-second interactions remains largely unexplored. As nocturnal hunters, bats rely on echolocation to navigate and to locate evasive prey, yet they have retained functional vision, despite the associated costs.
View Article and Find Full Text PDFIEEE Trans Image Process
September 2025
3D imaging based on phase-shifting structured light is widely used in industrial measurement due to its non-contact nature. However, it typically requires a large number of additional images (multi-frequency heterodyne (M-FH) method) or introduces intensity features that compromise accuracy (space domain modulation phase-shifting (SDM-PS) method) for phase unwrapping, and it remains sensitive to motion. To overcome these issues, this article proposes a nonlinear phase coding-based stereo phase unwrapping (NPC-SPU) method that requires no additional patterns while maintaining measurement accuracy.
View Article and Find Full Text PDFCancer Discov
September 2025
Evolutionary Dynamics Group, Centre for Cancer Evolution, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom.
Unlabelled: Oncogenes amplified on extrachromosomal DNA (ecDNA) contribute to treatment resistance and poor survival across cancers. Currently, the spatiotemporal evolution of ecDNA remains poorly understood. In this study, we integrate computational modeling with samples from 94 treatment-naive human glioblastomas (GBM) to investigate the spatiotemporal evolution of ecDNA.
View Article and Find Full Text PDF