98%
921
2 minutes
20
(Nees) Keng f. is one of the most widely distributed shrubby bamboo species in the temperate region of northwest (NW) Himalayas. Along with the other three temperate bamboo species, namely , and , commonly called as 'ringal', and utilized for making various articles of household and commercial purpose by local artisans. Despite huge ecological and socio-economic importance, they are least studied and lacks baseline genetic information. In this study, ~10 Gb genome sequence data with 70.68 million reads were generated for , through genome skimming approach based on high throughput next-generation sequencing technology with Illumina protocol. The high-quality reads were assembled into 31,997 contigs, which comprised 1943 microsatellite repeats. The dinucleotide and trinucleotide repeats were most abundantly distributed in the genome with 52.95 and 41.17%, respectively. Depending on the sufficient flanking sequence, only 1123 repeats were successfully tagged with primer pairs and these sites were designated as sequence-tagged microsatellite (STMS) markers. Further, a subset of 106 STMS markers were validated through PCR amplification; 77 marker loci were successfully amplified, and 48 of these showed polymorphism. Same set of marker loci were also tested for their cross-amplification in other three temperate bamboo species of the NW Himalayas, which revealed good level of transferability (27-48%) but lesser polymorphism (4-12%). In addition, the genomewide in silico cross-amplification revealed poor cross-transferability in other bamboo taxa representing four different phylogenetic lineages, namely (10.2%), (3.03%), (1.60%), (0.89%) and (0.36%). Ten polymorphic markers were further used to estimate the measures of genetic diversity in two natural populations, which revealed high genetic diversity (polymorphic information content, PIC = 0.889; expected heterozygosity, = 0.756) and low genetic differentiation (=0.061; = 5.445). To the best of our knowledge, this is one of the pioneer studies carried out for the development of genomic STMS markers through genome skimming approach in Indian bamboo species. The marker information generated here is novel and of paramount importance for future genetic studies in as well as other temperate bamboo species through cross-transferability.
Download full-text PDF |
Source |
---|
Mitochondrial DNA B Resour
September 2025
Department of Forestry and Nature Resources, National Chiayi University, Chiayi, Taiwan.
Hayata 1916 is a unique bamboo species endemic to Taiwan, typically found at elevations ranging from 500 to 1,500 meters. This study provides a detailed analysis of the complete chloroplast genome of for the first time. The genome spans 139,664 base pairs (bp) and consists of a large single-copy (LSC) region of 83,192 bp, a small single-copy (SSC) region of 12,869 bp, and two inverted repeat (IR) regions, each 21,798 bp in length.
View Article and Find Full Text PDFMicrobiologyopen
October 2025
Department of Agronomy, National Taiwan University, Taipei, Taiwan.
Currently, there is an increasing use of whole-genome sequencing (WGS) studies to investigate the molecular taxonomy, metabolic properties, enzyme capabilities, and bioactive substances of lactic acid bacteria (LAB) species. In this study, the genome of strain Pediococcus pentosaceus BBS1 was sequenced using the Illumina HiSeq. 2500 platform to determine its classification, annotate its main features, and evaluate its safety characteristics.
View Article and Find Full Text PDFPlant Cell Environ
September 2025
State Key Laboratory of Tree Genetics and Breeding, Co-Innovation Center for Sustainable Forestry in Southern China, Bamboo Research Institute, Key Laboratory of National Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, School of Life Sciences, Nanjing Forestry
CRISPR ribonucleoprotein (RNP)-mediated genome editing offers a transgene-free platform for precise genetic modification in diverse herbaceous and tree species, including rice, wheat, apple, poplar, oil palm, rubber tree and grapevine. However, its application in woody plants faces distinct challenges, notably inefficient delivery and regeneration difficulties, particularly in species such as bamboo. While some of these issues also occur in herbaceous plants, they are often significantly more complex in woody species due to factors such as intricate cell wall architecture, widespread recalcitrant genotypes and inherent limitations of current delivery platforms.
View Article and Find Full Text PDFBiodivers Data J
August 2025
Milwaukee Public Museum, Milwaukee, United States of America Milwaukee Public Museum Milwaukee United States of America.
Background: The bamboos (Poaceae, Bambusoideae) are important ecological and economic resources distributed across five continents. Maps of the distribution of the four major bamboo clades are popular in the scientific and trade literature. To date, these global scale maps have been drawn manually through various means.
View Article and Find Full Text PDFFront Plant Sci
August 2025
Department of Agrobiotechnology, Institute of Agriculture, RUDN University, Moscow, Russia.
Introduction: Heavy metal pollution threatens ecosystems and agriculture, necessitating affordable solutions.
Methods: We evaluated the combined effect of β-sitosterol (Bs, 100 mg L) and eucalyptus biochar (Eb, 10%) on bamboo ( f. ) under copper stress (100 and 200 mg L Cu).