Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Background: Mesenchymal stem cells (MSCs) have recently shown promise for the treatment of various types of chronic kidney disease models. However, the mechanism of this effect is still not well understood. Our study is aimed to investigate the effect of MSCs on transforming growth factor beta 1 (TGF-β1)-induced epithelial mesenchymal transition (EMT) in renal tubular epithelial cells (HK-2 cells) and the underlying mechanism related to the reciprocal balance between hepatocyte growth factor (HGF) and TGF-β1.

Methods: Our study was performed at Ningbo University, , Zhejiang, China between Mar 2017 and Jun 2018. HK-2 cells were initially treated with TGF-β1, then co-cultured with MSCs. The induced EMT was assessed by cellular morphology and the expressions of alpha-smooth muscle actin (α-SMA) and EMT-related proteins. MTS assay and flow cytometry were employed to detect the effect of TGF-β1 and MSCs on HK-2 cell proliferation and apoptosis. SiRNA against hepatocyte growth factor (siHGF) was transfected to decrease the expression of HGF to identify the role of HGF in MSCs inhibiting HK-2 cells EMT.

Results: Overexpressing TGF-β1 decreased HGF expression, induced EMT, suppressed proliferation and promoted apoptosis in HK-2 cells; but when co-cultured with MSCs all the outcomes were reversed. However, after treated with siHGF, all the benefits taken from MSCs vanished.

Conclusion: TGF-β1 was a motivating factor of kidney cell EMT and it suppressed the HGF expression. However, MSCs provided protection against EMT by increasing HGF level and decreasing TGF-β1 level. Our results also demonstrated HGF is one of the critical factor in MSCs anti- fibrosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8223559PMC
http://dx.doi.org/10.18502/ijph.v50i5.6108DOI Listing

Publication Analysis

Top Keywords

hk-2 cells
20
hgf expression
12
growth factor
12
mscs
9
mesenchymal stem
8
cells
8
stem cells
8
emt increasing
8
hgf
8
increasing hgf
8

Similar Publications

Hirudin, a polypeptide extracted from medicinal leeches, has demonstrated potential in treating renal fibrosis. This study aimed to explore the underlying mechanisms by which Hirudin alleviates renal fibrosis. Renal fibrosis models were established using unilateral ureteral obstruction (UUO) surgery in rats and transforming growth factor-β (TGF-β)-induced HK-2 cells, followed by treatment with different concentrations of Hirudin.

View Article and Find Full Text PDF

The progression of renal fibrosis is difficult to reverse, and Poria cocos, one of the main components of Wenyang Zhenshuai Granules, has been shown to be crucial to the development of the epithelial-mesenchymal transition (EMT). This study aimed to examine the molecular mechanism by which Poricoic Acid A (PAA) inhibited the advancement of EMT in renal tubular epithelial (RTE) cells. The protein levels of sprouty RTK signaling antagonist 2 (SPRY2) extracellular regulated protein kinases (ERK), and p-ERK were measured.

View Article and Find Full Text PDF

Renal ischemic disease represents a severe clinical pathological condition commonly observed in acute kidney injury (AKI), renal transplantation, and kidney surgery. It leads to renal tubular epithelial cell damage, inflammatory responses, and cell death, potentially progressing to chronic kidney disease (CKD) or even renal failure, significantly impairing patients' quality of life and survival rates. Current therapeutic strategies for renal ischemia-reperfusion injury (IRI) include pharmacological interventions, cell therapy, and gene therapy, yet their efficacy remains limited and may be accompanied by adverse effects.

View Article and Find Full Text PDF

Aerobic glycolysis is critical for tumor development and metastasis. Regulating the activity of vital metabolic enzymes in the tumor glycolysis process, such as hexokinase 2 (HK-2), is expected for tumor treatment. However, conventional small molecule inhibitors only block the activity of proteases with consistently high doses via occupation-driven pattern, leading to off-target effects which limit their clinical application.

View Article and Find Full Text PDF

Long-chain PFAS potently disrupt renal carboxylesterase activity and exacerbate nephrotoxicity: an investigation of the chain length-dependent nephrotoxicity of PFAS.

Environ Int

September 2025

Department of Urology, The Second Affiliated Hospital, Guangdong Provincial Key Laboratory of Urological Diseases, Guangzhou Medical University, Guangzhou, Guangdong 510260, China. Electronic address:

Perfluoroalkyl and polyfluoroalkyl substances (PFAS) are recognized as critical environmental health hazards, however, their toxicity mechanisms in specific organ systems remain poorly characterized. This study systematically investigated the chain length-dependent nephrotoxicity of PFAS and their inhibitory effects on renal carboxylesterase (CES) activity. In vitro experiments revealed that PFAS were cytotoxic to Human Kidney-2 (HK-2) cells in a dose-dependent and chain length-dependent manner.

View Article and Find Full Text PDF