High-throughput injection molded microfluidic device for single-cell analysis of spatiotemporal dynamics.

Lab Chip

Department of Mechanical Engineering, Seoul National University, Seoul, Republic of Korea. and Institute of BioEngineering, Seoul National University, Seoul, Republic of Korea and Institute of Advanced Machinery and Design, Seoul National University, Seoul, Republic

Published: August 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

Single-cell level analysis of various cellular behaviors has been aided by recent developments in microfluidic technology. Polydimethylsiloxane (PDMS)-based microfluidic devices have been widely used to elucidate cell differentiation and migration under spatiotemporal stimulation. However, microfluidic devices fabricated with PDMS have inherent limitations due to material issues and non-scalable fabrication process. In this study, we designed and fabricated an injection molded microfluidic device that enables real-time chemical profile control. This device is made of polystyrene (PS), engineered with channel dimensions optimized for injection molding to achieve functionality and compatibility with single cell observation. We demonstrated the spatiotemporal dynamics in the device with computational simulation and experiments. In temporal dynamics, we observed extracellular signal-regulated kinase (ERK) activation of PC12 cells by stimulating the cells with growth factors (GFs). Also, we confirmed yes-associated protein (YAP) phase separation of HEK293 cells under stimulation using sorbitol. In spatial dynamics, we observed the migration of NIH 3T3 cells (transfected with Lifeact-GFP) under different spatiotemporal stimulations of PDGF. Using the injection molded plastic devices, we obtained comprehensive data more easily than before while using less time compared to previous PDMS models. This easy-to-use plastic microfluidic device promises to open a new approach for investigating the mechanisms of cell behavior at the single-cell level.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0lc01245aDOI Listing

Publication Analysis

Top Keywords

injection molded
12
microfluidic device
12
molded microfluidic
8
spatiotemporal dynamics
8
single-cell level
8
microfluidic devices
8
dynamics observed
8
microfluidic
6
device
5
high-throughput injection
4

Similar Publications

Pathogenic characteristics of Causing Black Root Rot of Carrot.

Plant Dis

September 2025

Institute of Plant Protection, University of Belgrade-Faculty of Agriculture, Department of Phytopathology, Nemanjina 6, Belgrade , Serbia, 11080.

The pathogenic soilborne and postharvest fungus , as newly reported pathogen in Serbia, caused significant disease symptoms on carrot roots and seedlings in inoculation assays. In October 2023, machine-washed and cold-stored carrot roots showed symptoms of black rot of patches and abundant sporulation. The influence of the postharvest treatment of machine washing was confirmed by additional sampling at the production site.

View Article and Find Full Text PDF

Glycoside hydrolase Ma3360 mediates immune evasion by Metarhizium anisopliae in insects.

Pestic Biochem Physiol

November 2025

National Key Laboratory of Green Pesticide, College of Plant Protection, South China Agricultural University, Guangzhou 510642, China. Electronic address:

Entomopathogenic fungi can precisely inhibit the cellular and humoral immune responses of host insects by secreting effector proteins, allowing them to overcome the innate immune barriers of their hosts. Nodule formation is an immune response primarily mediated by insect hemocytes, which can rapidly and efficiently capture invading pathogenic fungi in the hemocoel. However, the molecular mechanisms by which fungi inhibit insect nodule formation through the secretion of effector proteins remain unclear.

View Article and Find Full Text PDF

An Asp f2-like protein negatively affects stress tolerance, conidiation and virulence in Metarhizium acridum.

Pestic Biochem Physiol

November 2025

School of Life Sciences, Chongqing University, Chongqing 401331, China; Chongqing Engineering Research Center for Fungal Insecticides, Chongqing 401331, China; Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, China. Electronic add

Metarhizium acridum is a typical filamentous fungus that has been widely used to control grasshoppers, locusts, and crickets. Genetic engineering is a common strategy to enhance its virulence, conidiation, and stress tolerance. Here, we report that the M.

View Article and Find Full Text PDF

Fabrication of Patterned Composite Microneedles via Inkjet Printing for Enhanced Drug Delivery.

Adv Healthc Mater

September 2025

Department of Smart Health Science and Technology, Kangwon National University (KNU), 1, Kangwondaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea.

Microneedle (MN) technology offers a minimally invasive, patient-friendly alternative to conventional hypodermic injections for dermal drug delivery. However, traditional micro-molding techniques are limited by single-material fabrication, involving labor-intensive processes, excessive material waste, and scalability issues, restricting broader therapeutic applications. To address these challenges, an inkjet printing method is implemented to fabricate multi-material MN patches using gelatin and gelatin methacryloyl (GelMA) hydrogels.

View Article and Find Full Text PDF

Natural fiber-reinforced biocomposites have gained the attention of researchers in the fields of household, aerospace, and automobile due to their low density, biodegradability, and recyclability. Regardless of these advantages, biocomposites possess certain limitations, such as moisture absorption, weak fiber-matrix adhesion, and poor flammability. To address this issue, fiber surfaces were modified in the present research investigation with a novel electroless copper coating process.

View Article and Find Full Text PDF