Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3165
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 317
Function: require_once
98%
921
2 minutes
20
Composite likelihood functions are often used for inference in applications where the data have a complex structure. While inference based on the composite likelihood can be more robust than inference based on the full likelihood, the inference is not valid if the associated conditional or marginal models are misspecified. In this paper, we propose a general class of specification tests for composite likelihood inference. The test statistics are motivated by the fact that the second Bartlett identity holds for each component of the composite likelihood function when these components are correctly specified. We construct the test statistics based on the discrepancy between the so-called composite information matrix and the sensitivity matrix. As an illustration, we study three important cases of the proposed tests and establish their limiting distributions under both null and local alternative hypotheses. Finally, we evaluate the finite-sample performance of the proposed tests in several examples.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8232013 | PMC |
http://dx.doi.org/10.1093/biomet/asaa039 | DOI Listing |