98%
921
2 minutes
20
Electronic interactions can radically enhance the performance of supported metal catalysts and are critical for fundamentally understanding the nature of catalysts. However, at the microscopic level, the details of such interactions tuning the electronic properties of the sites on the metal particle's surface and metal-support interface remain obscure. Herein, we found polarized electronic metal-support interaction (pEMSI) in oxide-supported Pd nanoparticles (NPs) describing the enhanced accumulation of electrons at the surface of NPs (superficial Pd ) with positive Pd atoms distributed on the interface (interfacial Pd ). More superficial Pd species mean stronger pEMSI resulting from the synergistic effect of moderate Pd-oxide interaction, high structural fluxionality and electron transport activity of Pd NPs. The surface Pd species are responsible for improved catalytic performance for H evolution from metal hydrides and formates. These extensive insights into the nature of supported-metal NPs may open new avenues for regulating a metal particle's electronic structure precisely and exploiting high-performance catalysts.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8179383 | PMC |
http://dx.doi.org/10.1039/d0sc06795d | DOI Listing |
RSC Adv
September 2025
Computational Biotechnology, RWTH Aachen University Worringerweg 3 52074 Aachen Germany
Recent advances in two-dimensional (2D) magnetic materials have promoted significant progress in low-dimensional magnetism and its technological applications. Among them, atomically thin chromium trihalides (CrX with X = Cl, Br, and I) are among the most studied 2D magnets due to their unique magnetic properties. In this work, we employ density functional theory calculations to investigate the mechanical and electronic properties of CrX monolayers in the presence of in-plane uniaxial strain.
View Article and Find Full Text PDFChem Commun (Camb)
September 2025
Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China.
Ce-doped cobalt boride (Ce-CoB) was synthesized a ZIF-67-derived boridation strategy, where Ce incorporation synergistically tunes the electronic structure to accelerate oxygen evolution kinetics. The Ce-CoB achieves an overpotential of 320 mV at 10 mA cm, outperforming benchmark CoB by 15.8% ( 350 mV) with remarkable robustness.
View Article and Find Full Text PDFDalton Trans
September 2025
Department of Chemistry & Biochemistry, University of Maryland Baltimore County, Baltimore, MD 21250, USA.
Two-dimensional van der Waals (2D-vdW) semiconducting ferroelectrics, such as CuInPSe (CIPSe) and CuInPS (CIPS), offer unique opportunities for lightweight, scalable, low-power nanoscale electronic devices. However, the limited pool of functional 2D-vdW ferroics highlights the need for clear design principles that can be used to guide experiments. Here, we use first-principles density functional theory (DFT) to study how isovalent atomistic substitution at In and P sites modifies structure, polarization, and electronic properties in CIPSe and CIPS.
View Article and Find Full Text PDFSAR QSAR Environ Res
August 2025
Center for Informational Biology, School of Life Science and Technology, University of Electronic Science and Technology of China (UESTC), Chengdu, China.
Peptide quantitative structure-activity relationship (pQSAR) has been widely used in the computational peptidology community to model, predict and explain the activity and function of bioactive peptides. Various amino acid descriptors (AADs) have been developed to characterize the residue building blocks of peptides at sequence level. However, a significant issue is that the total number of AAD-characterized descriptors is proportional to peptide length, thus causing inconsistency in the resulting descriptor vector matrix for a panel of length-varying peptide sequences (LVPSs), which cannot be engaged in pQSAR modelling.
View Article and Find Full Text PDFPhys Chem Chem Phys
September 2025
School of Physics, Nanjing University of Science and Technology, Nanjing 210094, China.
Multifunctional materials that simultaneously possess intrinsic magnetic and superhard properties, particularly those composed of light elements, have a wide range of applications in advanced sensors, shielding, durable devices, and other fields. However, research on the development and understanding of such materials remains limited. In this study, a series of 3D C covalent networks derived from the C fullerene precursor were theoretically designed.
View Article and Find Full Text PDF