98%
921
2 minutes
20
Herein, we entrapped Thymus vulgaris essential oil (EO) within the physically cross-linked sponge-like architecture of cryogels by ice template-assisted freeze-drying. Their 3D cryogenically-structured network was built through hydrogen bonding formed by blending two naturally-derived polysaccharides, chitosan and dextrin. The embedment of EOs within the cryogel matrix generates porous films with an increased elasticity that allows their fast shape recovery after full compression. Thus, the swollen EOs-loaded cryogel films exhibited an elastic modulus of 3.00 MPa, which is more than 40 times higher than that of polysaccharide films without EOs (an elastic modulus of only 0.07 MPa). In addition, the encapsulation of bioactive compounds endows the bio-based films with both antioxidant and antifungal properties, showing a radical scavenging activity of 65% and a zone inhibition diameter of 40 mm for Candida parapsilosis fungi. Our results recommend the entrapment of EOs into bio-based cryogel carriers as a straightforward approach to provide 'green' polysaccharide-based films having both improved physicochemical properties and remarkable antifungal activity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2021.06.068 | DOI Listing |
Biochim Biophys Acta Biomembr
September 2025
Department of Pharmaceutical Sciences, University of Vienna, Josef-Holaubek-Platz 2, Vienna, Austria.. Electronic address:
Using the stable synthetic analogue 3-aza-dehydroxylysyl-phosphatidylglycerol (3adLPG), the putative role of native staphylococcal LPG in inhibiting the antibiotic daptomycin from binding to its target phosphatidylglycerol (PG), was investigated with respect to interfacial interactions between these lipids, daptomycin, and calcium ions. The influence of lipid monolayer/bilayer composition and interfacial ion concentrations upon the structure and integrity of model membranes were probed after daptomycin challenge using a combination of surface x-ray scattering techniques and fluorescence assays. In models representing the membrane composition of the daptomycin susceptible phenotype consisting of PG/3adLPG in a 7:3 M ratio, calcium ions drive the formation of two separate phases; Ca cross-linked PG/PG pairs and PG/3adLPG ion pairs.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Department of Materials Science and Engineering, College of Engineering, Texas A&M University, College Station, Texas 77843, United States.
Hydrogel-based bioinks are widely adopted in digital light processing (DLP) 3D printing. Modulating their mechanical properties is especially beneficial in biomedical applications, such as directing cell activity toward tissue regeneration and healing. However, in both monolithic and granular hydrogels, the tunability of mechanical properties is limited to parameters such as cross-linking or packing density.
View Article and Find Full Text PDFJ Am Chem Soc
September 2025
Institute of Sustainability for ChemicalsEnergy and Environment (ISCE), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Singapore, Jurong Island 627833, Republic of Singapore.
Thermosets with permanent cross-linked structures provide excellent durability but pose significant challenges for reprocessing and recycling, raising engineering and environmental concerns as their usage expands. The advent of covalent adaptable networks (CANs) with dynamic covalent linkages has improved thermoset recyclability and enabled the fusion of identical polymer networks (A-A type fusion). However, fusing different thermosets (A-B type fusion) remains challenging due to their distinct dynamic behaviors and variable activation energies for bond exchange.
View Article and Find Full Text PDFACS Appl Mater Interfaces
September 2025
Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
Sustainable and chemically resilient hydrogels are critically needed in biointerface engineering, particularly for 3D cell culture systems and surface modification under physiological to mildly alkaline conditions. However, physically cross-linked cellulose nanofiber (CNF) hydrogels─despite their renewable origin and biocompatibility─typically disintegrate at pH > 8, limiting their use in polydopamine (PDA)-based surface functionalization. Here, we present a simple and scalable physical treatment strategy to fabricate alkali-resistant, physically cross-linked hydrogels from carboxymethyl cellulose nanofibers (CMCF).
View Article and Find Full Text PDFGrowing environmental concerns over the extensive use of petroleum-based polymer packaging have spurred interest in the development of bio-based alternatives. In this work, the incorporation of tannic acid as a cross-linker into chitosan at concentrations of 0-60 wt% was explored. The resulting cross-linking between chitosan chains induced by tannic acid through hydrogen and Schiff-base covalent bonding was confirmed by X-ray photoelectron spectroscopy and gel content measurements.
View Article and Find Full Text PDF