Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

The nanoparticle agent, combined with a targeting factor reacting with lesions, enables specific CT imaging. Thus, the identification of the nanoparticle agents has the potential to improve clinical diagnosis. Thanks to the energy sensitivity of the photon-counting detector (PCD), it can exploit the K-edge of the nanoparticle agents in the clinical x-ray energy range to identify the agents. In this paper, we propose a novel data-driven approach for nanoparticle agent identification using the PCD. We generate two sets of training data consisting of PCD measurements from calibration phantoms, one in the presence of nanoparticle agent and the other in the absence of the agent. For a given sinogram of PCD counts, the proposed method calculates the normalized log-likelihood sinogram for each class (class 1: with the agent, class 2: without the agent) using thenearest neighbors (NN) estimator, backproject the sinograms, and compare the backprojection images to identify the agent. We also proved that the proposed algorithm is equivalent to the maximum likelihood-based classification. We studied the robustness of dose reduction with gold nanoparticles as the K-edge contrast media and demonstrated that the proposed method identifies targets with different concentrations of the agents without background noise.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6560/ac0cc1DOI Listing

Publication Analysis

Top Keywords

nanoparticle agent
16
agent
8
agent identification
8
nanoparticle agents
8
proposed method
8
class agent
8
nanoparticle
6
data-driven maximum
4
maximum likelihood
4
likelihood classification
4

Similar Publications

Aptamers as target-specific recognition elements in drug delivery.

Adv Drug Deliv Rev

September 2025

Biochemistry, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Molecular, Cellular, and Developmental Biology, CUNY Graduate Center, The City University of New York, 365 Fifth Avenue, New York, NY 10016, United States; Chemistry, CUNY Gradua

Targeted drug delivery significantly enhances therapeutic efficacy across various diseases, particularly in cancer treatments, where conventional approaches such as chemotherapy and radiotherapy often cause severe side effects. In this context, nucleic acid aptamers-short, single-stranded DNA or RNA oligonucleotides capable of binding specific targets with high affinity-have emerged as promising tools for precision drug delivery and therapy. Aptamers can be selected against whole, living cells using SELEX and chemically modified for diverse applications.

View Article and Find Full Text PDF

Peptide-targeted nanoparticles for tumor therapy.

J Control Release

September 2025

Laboratory of Precision and Nanomedicine, Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila 14b, 50411 Tartu, Estonia; Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA. Electronic address:

Most chemotherapeutics distribute non-specifically throughout the body, resulting in off-target toxicities. Nanoparticle (NP) formulations provide a strategy to improve drug delivery by extending circulation time, protecting therapeutic agents from degradation, and enabling controlled release. However, delivering NPs effectively to solid tumors remains challenging due to the barriers within the tumor microenvironment.

View Article and Find Full Text PDF

Harnessing the significant buildup of lactic acid (LA) within the tumor microenvironment (TME) for metabolic manipulation presents a promising avenue for cancer treatment. Nevertheless, single-agent therapies often fail to address the complex and varying needs of TME heterogeneity, posing a substantial scientific hurdle in oncology. In this context, we employ asymmetric mesoporous silica nanoparticles (AMS NPs) as delivery vehicles, simultaneously loading them with zinc‑cobalt‑manganese ferrite nanoparticles (ZCMF NPs), lactate oxidase (LOX), and doxorubicin (DOX).

View Article and Find Full Text PDF

Gold nanoparticles (Au NPs) are widely used in diverse technological and scientific applications due to their unique optical and catalytic properties. These properties are strongly influenced by the size, shape, composition, and/or concentration of the NPs, which in turn depend on the synthesis conditions. Therefore, the development of simple, cost-effective, and reliable analytical methods for their characterization is essential.

View Article and Find Full Text PDF

textcolorred This study reports the green synthesis, characterization, and radiation shielding performance of BaOBiO nanocomposites using Euphorbia tirucalli latex as a reducing agent. Structural analysis via PXRD confirmed distinct crystalline phases, and SEM revealed agglomerated nanoparticles below 500 nm. The UV-Vis spectra showed a wide optical bandgap of 3.

View Article and Find Full Text PDF