A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: Network is unreachable

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1075
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3195
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 597
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 511
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 317
Function: require_once

AIE-active polyelectrolyte based photosensitizers: the effects of structure on antibiotic-resistant bacterial sensing and killing and pollutant decomposition. | LitMetric

AIE-active polyelectrolyte based photosensitizers: the effects of structure on antibiotic-resistant bacterial sensing and killing and pollutant decomposition.

J Mater Chem B

Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.

Published: July 2021


Category Ranking

98%

Total Visits

921

Avg Visit Duration

2 minutes

Citations

20

Article Abstract

A facile and effective multifunctional platform with high bacterial detection sensitivity, good antibacterial activity, and excellent dye decomposition efficiency holds great promise for wastewater treatment. To explore the design rationality and mechanism of material platforms with various integrated components into a single molecule for wastewater treatment applications, herein, four kinds of polyelectrolyte photosensitizers with aggregation-induced emission (AIE) fluorescent units are synthesized and systematically studied to investigate the structure-property relationship that influences the level of conjugation and the hydrophobicity-hydrophilicity balance. By improving the strength of the conjugation, the new AIE photosensitizers DBPVEs (including DBPVE-4 and DBPVE-6) generate a reactive oxygen species (ROS), and a decomposition efficiency of around 55% is obtained for dyes when they are exposed to DBPVEs under white light irradiation, which is higher than those of DBPEs (including DBPE-4 and DBPE-6). More importantly, owing to the longer and more flexible aliphatic chains of DBPVE-6 that facilitate efficient intercalation into cell membranes, the staining ability of DBPVE-6 for methicillin-resistant S. epidermidis (MRSE) is greatly enhanced as compared to that of DBPVE-4. It should be noted that the antibacterial experiment indicates that DBPVE-6 displays potent toxicity to MRSE with 99.9% killing efficiency under white light irradiation. This work provides essential theoretical and experimental guidance on the designing of new photosensitizers for wastewater treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d1tb00939gDOI Listing

Publication Analysis

Top Keywords

wastewater treatment
12
decomposition efficiency
8
white light
8
light irradiation
8
aie-active polyelectrolyte
4
polyelectrolyte based
4
photosensitizers
4
based photosensitizers
4
photosensitizers effects
4
effects structure
4

Similar Publications