98%
921
2 minutes
20
We describe the synthesis of Fe(ii)-based octahedral coordination cages supported by calixarene capping ligands. The most porous of these molecular cages has an argon accessible BET surface area of 898 m g (1497 m g Langmuir). The modular synthesis of molecular cages allows for straightforward substitution of both the bridging carboxylic acid ligands and the calixarene caps to tune material properties. In this context, the adsorption enthalpies of C/C hydrocarbons ranged from -24 to -46 kJ mol at low coverage, where facile structural modifications substantially influence hydrocarbon uptakes. These materials exhibit remarkable stability toward oxidation or decomposition in the presence of air and moisture, but application of a suitable chemical oxidant generates oxidized cages over a controlled range of redox states. This provides an additional handle for tuning the porosity and stability of the Fe cages.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8159286 | PMC |
http://dx.doi.org/10.1039/d0sc01833c | DOI Listing |
Chem Sci
September 2025
School of Chemistry, University of Birmingham Molecular Sciences Building, Edgbaston Birmingham B15 2TT UK
The targeted formation of low-symmetry coordination cages represents a significant design challenge but offers the potential to engineer bespoke molecular hosts with precision. In this work, we have combined the design principles of geometric complementarity and coordination sphere engineering to direct the site- and orientation-selective self-assembly of heteroleptic PdL L -type coordination cages from low-symmetry ligands. The effects of different combinations of heterocyclic donors and their locations within the cage structures on isomer distributions were studied, providing insights on shifts in the balance between non-covalent interactions in the first and second coordination spheres of the cages.
View Article and Find Full Text PDFEnviron Pollut
September 2025
ECOSPHERE, Department of Biology, University of Antwerp, Belgium.
PER: and polyfluoroalkyl substances (PFAS) are persistent environmental pollutants that accumulate in aquatic ecosystems, posing a threat to wildlife. This study examines the potential of Asian clams (Corbicula fluminea) as an active biomonitoring species for assessing PFAS contamination in the Scheldt River, Belgium. Clams were exposed in cages at six sites along the river for a six-week exposure period, with simultaneous collection of sediment and water samples at each site.
View Article and Find Full Text PDFAdv Mater
September 2025
Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico, Universitat de València-Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain.
Bioorthogonal chemistry that can be controlled through near-infrared (NIR) light is a promising route to therapeutics. This study proposes a method to intracellularly photoactivate prodrugs using plasmonic gold nanostars (AuNSt) and NIR irradiation. Two strategies are followed.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
September 2025
University of the Free State, Chemistry Department, Bloemfontein, South Africa.
The crystal structure of a nitrate anion caged in spherical vanadium and oxygen structure surrounded by sodium hy-droxy and water solvent mol-ecules, systematic name poly[[hepta-deca-aqua-tetra-deca-oxidonona-sodium][penta-cosa-aqua-nitratoundeca-oxido-penta-deca-vanadium]], HNNaOV is reported. The complex crystallizes in the non-centrosymmetric space group and exhibits many inter- and intra-molecular hydrogen-bonding inter-actions. The complex contains V and V centres, which are six-coordinate or octa-hedrally coordinated.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
September 2025
Department of Chemistry, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P.R. China.
Porous organic cages (POCs) have emerged as promising porous materials for a wide range of applications. However, their development is often limited by insufficient chemical stability and challenges in systematically functionalization. Herein, we reported the design and synthesis of a tetrazine-based POC (TC1) featuring rigid tetrahedral structure, prepared via a one-pot nucleophilic aromatic substitution reaction.
View Article and Find Full Text PDF