98%
921
2 minutes
20
This protocol identifies the immunity proteins of the bactericidal enzymes: colicin E3 and bacteriocin, produced by a pathogenic Escherichia coli strain using antibiotic induction, and identified by MALDI-TOF-TOF tandem mass spectrometry and top-down proteomic analysis with software developed in-house. The immunity protein of colicin E3 (Im3) and the immunity protein of bacteriocin (Im-Bac) were identified from prominent b- and/or y-type fragment ions generated by the polypeptide backbone cleavage (PBC) on the C-terminal side of aspartic acid, glutamic acid, and asparagine residues by the aspartic acid effect fragmentation mechanism. The software rapidly scans in silico protein sequences derived from the whole genome sequencing of the bacterial strain. The software also iteratively removes amino acid residues of a protein sequence in the event that the mature protein sequence is truncated. A single protein sequence possessed mass and fragment ions consistent with those detected for each immunity protein. The candidate sequence was then manually inspected to confirm that all detected fragment ions could be assigned. The N-terminal methionine of Im3 was post-translationally removed, whereas Im-Bac had the complete sequence. In addition, we found that only two or three non-complementary fragment ions formed by PBC are necessary to identify the correct protein sequence. Finally, a promoter (SOS box) was identified upstream of the antibacterial and immunity genes in a plasmid genome of the bacterial strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3791/62577 | DOI Listing |
J Am Soc Mass Spectrom
September 2025
Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States.
An ongoing goal of top-down mass spectrometry is to increase the performance for larger proteins. Using higher energy activation methods, like 193 nm ultraviolet photodissociation (UVPD), offers the potential to cause more extensive fragmentation of large proteins and thereby yield greater sequence coverage. Obtaining high sequence coverage requires confident identification and assignment of fragment ions, and this process is hampered by spectral congestion and low signal-to-noise ratio (S/N) of the fragment ions.
View Article and Find Full Text PDFAnal Chem
September 2025
Department of Chemistry, The University of Akron, Akron, Ohio 44325, United States.
Tires are complex polymeric materials composed of rubber elastomers (both natural and synthetic), fillers, steel wire, textiles, and a range of antioxidant and curing systems. These constituents are distributed differently among the various tire parts, which are classified based on their function and proximity to the rim. This study presents a rapid and sensitive approach for the characterization of tire components using mild thermal desorption/pyrolysis (TDPy) coupled to direct analysis in real-time mass spectrometry (DART-MS).
View Article and Find Full Text PDFJ Mass Spectrom
October 2025
Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Canada.
The strong C-F bond found in per- and poly-fluorinated alkyl substances (PFAS) makes them resistant to degradation and thus persistent in the environment. One of the most common methods for quantifying PFAS in environmental matrices is to use tandem mass spectrometry. However, the dissociation of ions made by deprotonating PFAS alcohols and acids has only been qualitatively explored.
View Article and Find Full Text PDFMikrochim Acta
September 2025
Department of Public Health Laboratory Sciences, College of Public Health, Hengyang Medical School, University of South China, 28 Changsheng West Road, Hengyang, 421001, Hunan, China.
We systematically evaluated the DNA adsorption and desorption efficiencies of several nanoparticles. Among them, titanium dioxide (TiO₂) nanoparticles (NPs), aluminum oxide (Al₂O₃) NPs, and zinc oxide (ZnO) NPs exhibited strong DNA-binding capacities under mild conditions. However, phosphate-mediated DNA displacement efficiencies varied considerably, with only TiO₂ NPs showing consistently superior performance.
View Article and Find Full Text PDFRapid Commun Mass Spectrom
September 2025
Département Médicaments et Technologies pour la Santé (DMTS), MetaboHUB, Université Paris-Saclay, CEA, INRAE, Gif sur Yvette, France.
Rationale: Electrospray (ESI), the most popular desorption/ionization technique used in mass spectrometry-based metabolomics, generates both protonated and deprotonated molecules, as well as adduct ions, sodium being the most frequent monoatomic cation entering their composition. With the spread and generalization of untargeted data-dependent and independent tandem mass spectrometry experiments, considering product ion spectra of sodium-containing entities appears relevant to complement fragmentation information of their protonated and deprotonated counterparts.
Methods: Solutions of pure standards, mainly amino and organic acids, were prepared at 1 μg/mL and injected either by direct infusion or by flow-injection prior to ESI-MS/MS analysis.